

LHCb Muon System TDR

Outline:

- Introduction
 - Physics requirements
 - Background conditions
- Overview of the Muon System
- Physics Performance
 - LO muon trigger
 - Muon identification muonic final states
- MWPC Detector
 - Detector design and construction
 - FE-chip and chamber prototype studies
- RPC Detector
 - Prototype studies
 - Detector design and construction
- Readout Electronics
- Project Organization

G.Carboni and B.Schmidt on behalf of the LHCb Muon Group

Physics Goals:

• The Muon system of *LHCb* is primarily used to trigger on muons produced in the decay of b-hadrons: $b \rightarrow \mu X$; In particular: $B^0 \rightarrow J/\psi(\mu^+\mu^-) K_s$; $B^0_s \rightarrow J/\psi(\mu^+\mu^-) \Phi$; $B^0_s \rightarrow \mu^+\mu^-$

- The muon momentum is measured precisely in the tracking system
- The muon system identifies muons from tracks in the tracking system

Requirements:

- Modest momentum resolution (~20%) for a robust P_{T} -selective trigger
- Good time resolution (a few ns) for reliable bunch-crossing identification
- Good muon identification (~90%); small pion-misidentification (~1%)

Introduction

Background sources in the LHC environment:

- * $\pi, \textbf{K} \rightarrow \mu$ X decays
 - main background for LO muon trigger
- Shower particles
 - hadron punch-through including shower muons
- Low-energy background induced by n-γ processes
 - contributes significant to chamber hit rate
- Machine background, in particular high energy beam-halo muons

Requirements:

- High rate capability of chambers
- Good ageing properties of detector components
- Detector instrumentation with sufficient redundancy

Overview

Muon track finding:

- Find seed pad in station M3
- Find pads within opened search windows (FOI) in stations M2, M4 and M5
- Use pads found in M2 and M3 to extrapolate to M1 and find pad in M1 within FOI
- \cdot Stations M1 and M2 are used for the P_T-measurement
 - -> Muon Trigger exploits multiple scattering in the muon shield by applying tight search windows

Muon Detector Layout

Side view: Front view: (1 Quadrant of Station 2) Support structure for Muon Stations **Region 4** Logical channel Muon Filter Muon Filter 3 Muon Filter Muon Filter 50mm x 250mm - Logical channel **Region 3 Region** Logical pad Region2 25mm x 125mm Region Region 2 Reg 1 12 5mm x 63mm 6.3mm > 300 Beam Pipe Sheilding Support structure for Muon Filter Total number of physical channels: ~120 k (TP: ~240k)

-> Projectivity to interaction point Total number of physical channels: ~120 k (TP: ~240k) Total number of logical channels: ~ 26k (TP: ~45k)

Received Particle Rates and System Technologies

Procedure to determine particle rates:

- LHCb peak Luminosity of 5×10^{32} cm²/s has been assumed
- Safety factor of 5 has been applied for M2-M5 and 2 for M1

		M1	M2	M3	M4	M5
Required Rate Capability per cm² Technology Choice		460 kHz	37.5 kHz	10 kHz	6.5 kHz	4.4 kHz
	R 1	t.b.d.	MWPC	MWPC	MWPC	MWPC
		186 kHz	26.5 kHz	3.3 kHz	2.2 kHz	1.8 kHz
	R 2	t.b.d.	MWPC	MWPC	MWPC	MWPC
		80 kHz	6.5 kHz	1.0 kHz	750 Hz	650 Hz
	R 3	MWPC	MWPC	MWPC	RPC	RPC
		25 kHz	1.2 kHz	415 Hz	250 Hz	225 Hz
	R4	MWPC	MWPC	MWPC	RPC	RPC

Technology Choice:

- In the outer part of M4 and M5 a technology with a rate capability of 1kHz/cm² and cross talk of 20-50% can be used -> RPC, covers 48% of muon system
- For most of the regions MWPCs with a time resolution about 3ns are the optimal solution.
 > MWPC, cover 52% of the total area
- No technology chosen yet for the inner part of M1 (<1% of total area).
 Technologies under consideration: triple GEMs and asymmetric wire chambers

Level O Muon Trigger

Trigger Performance:

TDR Muon system includes realistic chamber geometry and detector response

- -> TDR Muon System is robust
- -> Slight improvement in performance compared to the TP Muon System.

Beam halo muons:

- Distribution of energy and radial position of halo muons 1m upstream of IP travelling in the direction of the muon system
- Muons entering the experimental hall behind M5 give hits in different BX in the muon stations
- ->No significant effect
- Halo muons are present in ~1.5% of the bunch crossings
- About 0.1% of them cause a L0 muon trigger

Algorithm:

- Extrapolate reconstructed tracks with p > 3GeV/c and first hits in Velo from T10 to the muon system (M2 etc.)
- Define a field of interest (FOI) around extrapolation point and
- Define minimum number of stations with hits in FOIs

Muon Identification

Performance:

	Nominal	Maxim	al
b	ackground	backgro	und
			p>6GeV/c
			∆Sx<0.053
εμ	94.0±0.3	94.3±0.3	90.0±0.6
Me	0.78±0.09	3.5±0.2	0.6±0.1
Mπ	1.50±0.03	4.00±0.05	1.2±0.05
Mĸ	1.65±0.09	3.8±0.1	1.2±0.1
MP	0.36±0.05	2.3±0.1	0.3±0.1

Additional cuts on slope difference ΔSx between tracking and muon system and p^{π} are required in case of large bkg.

- $\rightarrow M^{\pi} \sim 1\%$
- ε^μ ~ 90%

LHCb THCp

$B^{0} \rightarrow J/\psi(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})~K_{s}$:

- Well established CP-violating decay from which angle β in the unitary triangle can be determined.
- J/ ψ ($\mu^+\mu^-$) reconstruction:
 - oppositely charged tracks identified as muons.
 - Mass of dimuon pair consistent with $\,J/\psi$ mass
 - -> More than 100k ev./year expected in LHCb
 - $B_s^0 \rightarrow \mu^+ \mu^-$:
- Decay involves FCNC and is strongly suppressed in the Standard Model
 - -> B^o mass resolution 18 MeV/c²
 - -> ~10 signal events over 3 bkg expected per year

LO performance for both decays:

- LO trigger acceptance of fully reconstructed events is 98%.
- LO muon acceptance is 95% with >70% triggered by muon trigger alone.

Overview:

Anode wire readout

- MWPC detector covers 52% of total area
- 864 chambers (up to 276/station)
- Same chamber height in all regions of a station (M1: 30cm; M5: 40cm)
- Chamber length varies from 40-140cm
- Chambers have Anode and/or Cathode readout with ~80k FF-channels in total

Performance requirements:

- Efficiency within 20ns time window >99% :
 - -> 1.5mm wire spacing
 - -> Hardwired OR of two 5mm gaps per FE-channel
 - Redundancy:
 - -> Two independent double gaps

- Good ageing properties:
 -> Charge densities in 10 LHCb years:
 - -> Ageing test is continues in GIF:

- -> Gas mixture: Ar/CO₂/CF₄ 40:50:10
- -> 0.5 C/cm on wires and 1.7 C/cm² on cathodes
- -> up to now about 30% of total charge accumulated, no important effect

Panels:

- Key element in MWPC, $\pm 50\mu$ m precision over 40 cm x 140 cm required
 - Nomex Honeycomb panels are baseline choice (made good experience in tests)
 - Other materials like polyurethanic foam are under consideration

Cathode PCB:

- For Region 3 access to cathode pads from top and bottom,
- For Region 1 and 2, double layer PCB with readout traces
 Capacitance between cathode pads ~ 4 pF.
 -> Electrical cross talk ~2%

LHCC Open Session 4 July 2001 B.Schmidt

Frames:

- Solution which does not require precision on wire fixation bars has advantages -> Precision could come from spacers introduced every 10-15cm in the frames
- Side bars will be used to bring the Gas in

-> 2 independent gas cycles foreseen in the chamber to enhance redundancy;

Wire:

• Gold-plated tungsten wire of $30\mu m$ with $60\pm10g$ tension will be used

LHCC Open Session 4 July 2001 B.Schmidt

Required tolerances:

LHCh

- •Wire-cathode distance: 2.5±0.1mm
- •Wire spacing: $1500\pm40\mu m$

Chamber Construction: Wire Soldering

Number of wire soldering points: 4.86 × 10⁶ !

- -> Time consuming task in chamber construction (1.5mm wire spacing)
- -> Automated soldering procedure mandatory for MWPC construction

Good results obtained with a laser beam

LHCC Open Session 4 July 2001

B.Schmidt

HV- and FE-Interface

HV-Interface:

- Separate HV-board with capacitors (0.5-1nF) and resistors (100k $\Omega)$
- -> Modular system which allows tests prior to installation on chambers and easy replacement

FE-Interface:

- Maximal standardization with only few types of FE-boards
- Implementation in two stages:
 - Spark protection and ASD-board
- FE-board dimensions (70x50mm) given by space constraints
- Chamber border region constraints
- -> Sum of both sides < 120mm

FE - Electronics

FE-chip specifications:

- Pulse width:
- Dose: up to 1Mrad

Inefficiency due to ASD pulse-width

< 50ns

LHCC Open Session 4 July 2001

B.Schmidt

FE-chip candidates:

- PNPI SMD (reference)
- SONY++ (usable in some regions only)
- ASDQ++ Modified version of ASDQ (R_{in}=280Ω) (R_{in}=25Ω, ENC: 1740+37e⁻/pF)
 -> Performs in general very well

 CARIOCA (0.25 μ CMOS, under dev.)
 t_p=7ns (pre-ampl.); R_{in}<20Ω; very low noise: 750+30e⁻/pF
 very low cost
 Design/Layout completed Sep.2001
 Final products: end 2002

-> Preferred solution

MWPC Prototype Tests

Performance results:

ADC and TDC Spectra

Performance results:

High rate performance

Cross talk between two 4x8cm Cathode pads

MWPCs satisfy all requirements for the Muon System with sufficient redundancy

Performance results:

Anode readout, cathode grounded

Combined Anode-Cathode readout

