Precise gain measurement of the LHCb muon chambers

Davide Pinci – INFN – Sezione di Roma, Italy

The LHCb Muon System

 Five tracking stations placed along the beam axis: M1 upstream and M2-M5 downstream the Calorimeters;

- 1368 MWPC and 24 Triple-GEM detectors, for a total area of 435 m²;
- System provides information for the Level 0 trigger and muon-identification;

The LHCb Muon MWPC

- * MWPC are made of 2 (M1) or 4 (M2-M5) identical gaps:
 - * 5 mm height;
 - × 30 µm diameter gold-plated tungsten wires placed at the center;
 - * Pitch of 2 mm;
 - × An Ar/CO₂/CF₄ (40/55/5) gas mixture;
 - Readout on wires and/or segmented cathode

- The level-0 trigger requires a fast and highly efficient measurement of muon Pt;
 Requirements for a double-gap:
 - 95% of efficiency in bunch crossing identification;
 - average number of hits per track lower than 1.1;

Experimental set-up

- * A four-gap chamber, gas flushed (50 cm³/min) was exposed to the 662 keV photons of a 1.3 GBq ¹³⁷Cs radioactive source;
- The wire plane was supplied at a voltage
 V by means of a high voltage system
 (CAEN SY2527) or commercial batteries
 for |V| < 500 V;

 The current drawn by the chamber *i* was measured on the ground return by means of an electrometer (Keithley 6845A) providing an accuracy as high as 10 fA;

The measurements

* In each measurement we recorded several values of the current flowing into the electrometer with the radioactive source in "ON" and "OFF" position:

The high voltage supplies

2. Commercial batteries in series or voltage values below 500 V, extremely stable;

The gain as a function of HV

Dependence on the gas density

- * From ideal gas equation: $\frac{\Delta \rho}{\rho_0} = \frac{\Delta P}{P_0} \frac{\Delta T}{T_0}$
- * The gas gain G dependence on the gas density at first order can be linearized:

$$\frac{\Delta G}{G_0} = \alpha \, \frac{\Delta \rho}{\rho_0} = \alpha \, (\frac{\Delta P}{P_0} - \frac{\Delta T}{T_0}) \quad \text{for } \mathsf{T} = \text{const.} \to \qquad \frac{\Delta G}{G_0} = \alpha \, \frac{\Delta P}{P_0}$$

* The ionization current I* is function of the gas density too. The energy released by an ionizing particle grows linearly with P:

$$\frac{\Delta I^*}{I_0^*} = \beta \, \frac{\Delta P}{P_0}$$

with $\beta \leq 1$. β being equal to 1 only for particle crossing the full gas gap;

* Therefore the dependence of the current drawn ($I = G \times I^*$) by the chamber on the gas pressure is given by:

$$\frac{\Delta I}{I_0} = (\alpha + \beta) \frac{\Delta P}{P_0}$$

The drawn current as a function of the gas ρ

- * The dependence of the current drawn was studied as a function of the gas pressure in order to evaluate the behavior of the gain as a function of the gas density.
- The gas pressure inside the chamber was increased up to about 20 mbar;
- The external gaps experienced a slight mechanical deformation that enhanced the gain decrease;
- In the HV range 2400V-2750V the slope (for gaps B and C) from linear fit is:

 $I(P)/I(P_0) = 1 - (5.1 \pm 0.2) \times (\Delta P[bar])$

I* as a function of the gas pressure

- * To study the behavior of the primary ionization current I* as a function of P the current drawn by the chamber was measured for $\Delta P=20$ mbar and $\Delta P=0$ mbar;
- * The anode voltage was 47 V;

The difference was evaluated to be: $\Delta I^*=0.078 \pm 0.002 \text{ pA}$

- * $\Delta I^*/I^*$ is 1.64% while $\Delta P/P$ is 2%;
- * The value found for β is:

 $\beta = 0.82 \pm 0.06$

 We can now extract the α parameter:

 $\alpha = -5.9 \pm 0.5$

valid in the whole working region.

$*$
 In LHCb β = 1 and thus $\alpha {+}\beta$ = -4.9

The Diethorn's formula

- For a wire chamber, the dependence of the gas gain on the anode voltage and geometrical and gas parameters is often described by means of the Diethorn's formula:
- * In Diethorn's model the Townsend coefficient is taken as linearly proportional to the electric field: $\alpha_{\text{Town}} = \text{kE}$; $G(V, \rho) = \left(\frac{V}{A(\rho)}\right)^{\binom{V}{B}} \quad \forall \text{ is the anode voltage;}$ $\bigcap \rho \text{ is the gas density;}$

dependent parameters;

 E_{min} and ΔV are gas

- E_{min} = minimal field needed for ionization;
- * $e\Delta V$ = is the minimum energy required to produce one more electron in the avalanche;

The parameters ${\rm E}_{\rm min}$ and ΔV (I)

* For each value of V_i , E_{min} and ΔV can be calculated:

(1) From experimental data of the gain as a function of the anode voltage V:

$$E_{min} = \frac{V \exp[L(V)/(L(V) - VD(V))]}{r_a \ln(r_c/r_a)} \qquad \Delta V = \frac{V \ln 2}{(VD(V) - L(V))\ln(r_c/r_a)}$$

where

$$L(V) \equiv \ln[G(V,\rho_0)] = \frac{V}{B} \ln\left(\frac{V}{A(\rho_0)}\right)$$
$$D(V) \equiv \frac{\mathrm{d}L}{\mathrm{d}V} = \frac{1}{B}\left(1 + \frac{BL(V)}{V}\right)$$

can be obtained directly from the measured gain values can be calculated from the first derivative of a second order polynomial passing through the considered $L(V_i)$ point and the two neighboring $L(V_{i-1})$ and $L(V_{i+1})$

(2) From experimental data of the gain as a function of the gas pressure:

$$\Delta V = -V \ln 2/\alpha \ln(r_c/r_a)$$

$$\alpha = -5.9 \pm 0.5$$

The parameters ${\rm E}_{\rm min}$ and ΔV (II)

* In the Diethorn's formula E_{min} and ΔV are only dependent on the gas mixtures and do not depend of the anode voltage;

* The experimental results show that the validity of the Diethorn's formula is good in the region:

 $1600 V \le V \le 2400 V$

* Outside from this range the approximation $\alpha_{Town} = kE$ is no longer valid;

The values of ∆V
 evaluated from the
 measurement of the
 gain dependence on
 the gas pressure are
 in reasonable
 agreement with the
 others;

Data fit with Diethorn's function

 We used the Diethorn's formula to fit the experimental behavior of the chamber gain as a function of the voltage applied to the wire;

- * The red curve (a) represents G(V) calculated assuming E_{min} = 60 kV/cm and ΔV = 32 V;
- * As expected the red curve fits well data in the range 1.4 kV $\leq V \leq$ 2.4 kV;
- ^{*} Outside from this region the Diethorn's formula can be used to fit data, but E_{min} and ΔV are only fit parameters;

- As an example the green curve (b) represents the best fit obtained in the working region of the chamber;
- \star E_{min} and ΔV are respectively 42 ± 2 kV/cm and 44 ± 3 V;

Conclusion

- * By using a high sensitive electrometer and very stable setup (voltage supplied with commercial batteries) the ionization current generated in a LHCb Muon MWPC by a ¹³⁷Cs radioactive source was measured;
- This allowed to measure the absolute value of the gain of a typical LHCb Muon MWPC (8.4 x 10⁴ at the working point) and its behavior as a function of the anode voltage and gas density;
- * The Diethorn's formula is able to fit well experimental data in the region 1.6 kV $\leq V \leq$ 2.4 kV and the gas parameters E_{min} and ΔV are found to be respectively 60 ± 2 kV/cm and 32 ± 1 V;
- * The gain variation as a function of the gas pressure has been measured and found to be 0.5%/mbar. A ±15% gain variation can happen in one year. LHCb is thinking on the possibility of correcting by means of the HV.