

LHCb experiment and its expected physics performance

Stefania Vecchi INFN Ferrara

Second Workshop on Theory, Phenomenology and Experiments in heavy flavour physics Capri, 16-18 June 2008

The LHCb experiment

- Dedicated B-physics experiment @LHC collider:
 - CP-violation
 - Rare decays
 - Standard Model / indirect evidence of New Physics
- LHCb@LHC
 - \sqrt{s} =14 TeV σ_{bb} ~500µb σ_{vis}/σ_{bb} ~120
 - Forward spectrometer $1.9 < |\eta| < 4.9$
 - Luminosity=2-5 x10³²cm⁻²s⁻¹
 - Max probability of single interaction
 - Low radiation damage / available since the beginning
 - 1 "year" (10^7 s) = 2 fb⁻¹ ~10¹² bb pairs produced in acceptance
- Detector and Trigger are especially designed for Bphysics studies

Event reconstruction performances

quantity	performance	
Track Impact Parameter	<σ(IP)> ~ 30 μm	
Track efficiency	ε>95% (tracks from B) ~4% ghost Ks→ππ ε~75% in VELO	Signal selection
Track momentum	σ(p)/p = [0.3,0.5]%	Tagging
PID π/K	Kaon ID <ε>~97% Mis ID (π) ~ 5% range p=[2,100]GeV/c	
B decay time	σ(t) ~ 40 fs	Time dependent analyses Bs
Invariant mass	σ(m _B)=15-20 MeV/c²	Signal selection Background suppression B _d /B _s
Tagging B ⁰	<ɛD²> = 4-5% B ⁰ <ɛD²> = 7-9% B ⁰ _s	CP asymmetry

The LHCb trigger

Running scenario & physics program

The B_s mixing phase

• Time dependent CP violation in the interplay

between mixing and decay

$$A_{CP}(t) = \frac{-\eta_f \sin \phi_s \sin(\Delta m_s t)}{\cosh(\Delta \Gamma_s t/2) - \eta_f \cos \phi_s \sinh(\Delta \Gamma_s t/2)} \qquad \eta_f = \pm 1$$

- Can probe NP phases in the box:
 - $\phi_s = \phi_s^{NP} + \phi_s^{SM}$
 - ϕ_s^{SM} = -2 β_s = -0.0368±0.0017 UTfit

See L. Silvestrini and J. Charles talks

The B_s mixing phase

LHCb-2006-047 LHCb-2007-027 LHCb-2007-101

- Tree transition $b \rightarrow c\overline{c}s$ (single weak phase)
 - Pure CP eigenstates: many channels (low yield) time dependent analysis
 - − Admixtures of CP eigenstates: $B_s \rightarrow J/\psi \phi$ (PS $\rightarrow VV$; L=0,1,2)

Large yield, low background

BUT: disentangling CP admixture (η_f =-1,+1) need also angular analysis: **1 angle** (θ_{tr}) or **3 angles** (θ_{tr} , ϕ_{tr} , θ_{ϕ})

decay	Yield (2fb ⁻¹)	B/S	σ(φ _s) rad 2fb ⁻¹
$B_s \rightarrow J/\psi_{\mu\mu}\eta_{\gamma\gamma}$	8.5k	2	0.109
B _s →J/ψ _{μμ} η _{πππ}	3k	3	0.142
B _s →J/ψ _{μμ} η' _{ππη}	2.2k	<1.14	0.154
B _s →J/ψ _{μμ} η' _{ργ}	4.2k	<0.5	0.08
$B_s \rightarrow \eta_{c(4h)} \phi_{KK}$	3k	0.6	0.108
$B_{s} \rightarrow D_{s KK\pi}^{+} D_{s KK\pi}^{-}$	4k	0.3	0.133
all CP eig.			0.046
$B_s \rightarrow J/\psi_{\mu\mu} \phi_{KK}$	131k	0.12	0.023(*)
combined			0.021

(*) full angular analysis $\sigma(\Delta\Gamma_s)=0.008 \text{ ps}^{-1}$ Control channels: $B_{u/d} \rightarrow J/\psi K^{+(*)}$, $B_s \rightarrow D_s \pi$

 $\sigma(\phi_s)^{-0.042}$ @0.5fb⁻¹ (~1/2 CDF+D0 end 2009)

20% more statistics including J/ $\psi \rightarrow e^+e^-$ decays 13

$B_s \rightarrow \mu^+ \mu^-$

- $B_s \rightarrow \mu^+ \mu^-$ is helicity suppressed in the SM
 - $BR^{SM}=(3.35\pm0.32)x10^{-9}hep-ph/0604057v5$
- Enhancement (suppression) possible due to SUSY contributions
 - $(tan\beta)^6/M_A^4$ MSSM with large $tan\beta$
 - one of the most sensitive channel to probe SUSY models and put constraints.
 - (Complementary information to the direct search of SUSY at LHC)
- Present experimental limits:
 - BR^{exp}<47x10⁻⁹ 90% CL (CDF 2fb⁻¹)
 - BR^{exp}<75x10⁻⁹ 90% CL (D0 1.3fb⁻¹)

LHCb-2007-033 LHCb-2008-018

$B_s \rightarrow \mu^+ \mu^- BR$ measurement

- **Trigger**: HTL single and di-muon (inclusive): high efficiency
- **Selection:** events are classified according to their distribution in a 3D space:
 - Geometrical Likelihood / Particle ID Likelihood / Invariant mass
- Main **background**:
 - bb $\rightarrow \mu\mu X$ suppressed by mass& Vertex resolution
 - − (B \rightarrow hh suppressed by PID)
- Efficiencies calibrated on control channels
 - $B \rightarrow hh, J/\Psi \rightarrow \mu\mu, B \rightarrow J/\Psi(\mu\mu)X, K_s \rightarrow \pi\pi, \Lambda \rightarrow \pi p,$ $D^* \rightarrow DO(\pi K)\pi$ and side-bands
- Branching Ratio **normalized** to $B^+ \rightarrow J/\Psi K^+$
 - Huge Yied/ same trigger&similar selection/ well measured BR
 - main systematics: hadronization factor ratio f(B_u)/f(B_s) (13%)

channel	Yield (2fb ⁻¹)	В
В₅→µµ	~30	~83

Limits (no signal observed): 0.05fb⁻¹ overtake CDF+D0 0.5 fb⁻¹ BR limits down to the SM

Signal observed:

2fb⁻¹ 3σ evidence of SM signal

6fb⁻¹ 5σ observation of SM signals

$B^0 \rightarrow K^{0*} \mu^+ \mu^-$

 ℓ^+

- Suppressed Loop FCNC process (EW penguins)
- Several observables to test the dynamics (NP ?)
 - Angular distributions: θ_{I} , ϕ , θ_{K^*}
 - Invariant mass $\mu^+\mu^-$ s =(m_{µµ})² =q²
- NP can affect:
 - Forward-backward asymmetry A_{FB}(s) in θ₁ distribution
 Dependence on s (predicted by several models)
 Zero of A_{FB}(s)
 SM s₀=4.36^{+0.33}-0.31 GeV²/c⁴ hep-ph/0505155
- Present experimental situation limited by low statistics (O(100)@B-factories) → see J. Walsh talk

W

16

LHCb-2007-038 LHCb-2007-039

$B \rightarrow K^{0*} \mu^+ \mu^-$ measurement

- Trigger: L0-muon, HLT inclusive (single and di-muon), <u>HLT exclusive</u>
- Main **background**:

Non resonant $B \rightarrow K\pi\mu\mu$ (BR~signal) (50%)

Inclusive $bb \rightarrow \mu\mu X$, $b \rightarrow \mu b \rightarrow c \rightarrow \mu$

Opposite sign convention wtr BaBar&Belle

channel	Yield (2fb ⁻¹)	B/S
В→К*µµ	7200±180±2200 50% s <m² <sub="">J/ψ</m²>	0.5

Systematics:

- distorsions in mass and θ_{I} to be known and corrected for == > A_{FB}
- Background distribution (correlated -> asymmetry, uncorrelated->symmetry). Need to correctly subtract in shape and size
- Decays contain more information than A_{FB} , s_0
 - Fit projections on angles θ_{l} , θ_{K} , ϕ_{L} adds information on the tranversity amplitudes (A_{perp} , $A_{//}$, A_{0}) F_{L} and $A_{T}^{(2)}$
 - → See T. Hurth & backup slides

Radiative decay $B_s \rightarrow \phi \gamma$

- $B_s \rightarrow \phi \gamma$ FCNC radiative penguin
- Time dependent CP asymmetry probe SM/NP

$$A_{CP}(t) = \frac{A^{dir}\cos(\Delta m_q t) + A^{mix}\sin(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) - A^{\Delta}\sinh(\Delta \Gamma_q t/2)}$$

SM:
$$A^{dir} \approx 0$$
, $A^{mix} \approx sin2\psi sin2\phi$, $A^{\Delta} \approx cos 2\psi cos\phi$

 $\tan \psi = |b \rightarrow s \gamma_R| / |b \rightarrow s \gamma_L|^{\sim} 0 \qquad \cos \phi \approx 1$

- A^{Δ} & A^{mix} probe the γ polarization
 - SM tan ψ ~0 can be increased by NP
 - with $\Delta \Gamma_s \neq 0 \Rightarrow A^{\Delta}$ can be measured no tagging required

LHCb-2007-030

LHCb-2007-147

channel	Yield (2fb ⁻¹)	B/S
Β _s →φγ	11 k	<0.55bb 90% CL

Some systematics considered

CP asymm	2 fb ⁻¹
σ(A ^{dir})	0.11
σ(A ^{mix})	0.11
$\sigma(A^\Delta)$	0.22 (*)

(*) No tagging required 18

Motivations for a precise measurement of $\boldsymbol{\gamma}$

UT-fit $\gamma = (88 \pm 16)^{\circ}$

γ from trees: $B^{0} \rightarrow D^{-} K^{+}$

Two tree ampl. (b \rightarrow c & b \rightarrow u) interfere via B_s mixing

Measure $\gamma + \varphi_s$ in a very clean way 8-fold ambiguity in γ reduced to 2 with a sizable $\Delta\Gamma_s$ $B_s^0 \{\overline{b}_s \\ \overline{u}\} K^-$ Simultaneous fit $B \rightarrow D K$ and $B \rightarrow D K$ Simultaneous fit $B_{s} \rightarrow D_{s}K$ and $B_{s} \rightarrow D_{s}\pi$ channels (tagged& untagged) to constrain common parameters $\Delta \Gamma_s$, ΔM_s , tagging K- π discrimination crucial to suppress specific bkg

decay	Yield (2fb ⁻¹)	B/S 90%CL	Sensitivity In 2fb ⁻¹
B _s →D _s K	6.2k	<0.18 bb [0.08-3]	σ (γ+φ _s)=9-12° (*)
B _s →D _s π	140k	<0.05 bb <0.4	σ(ΔM _s)=0.007ps⁻¹
			(*) σ(φ _s)~1.2°

LHCb-2007-041 LHCb-2007-017

γ from trees: B \rightarrow DK

LHCb-2008-011 LHCb-2006-066 LHCb-2007-043

• Two tree amplitudes (b \rightarrow c & b \rightarrow u) interfere in decays to a common D⁰ and \overline{D}^0 state f_D

$$\frac{A(B^- \to \overline{D}^0 K^-)}{A(B^- \to D^0 K^-)} = r_B e^{i\delta_B} e^{-i\gamma}$$

- Measure the time independent asymmetries (no tagging or time measurement required / PID crucial)
- <u>GLW method</u>: *f_D* is a CP eigenstate: K⁺K⁻, π⁺π⁻, K_sπ⁺π⁻ Large rate / small asymmetries
- <u>ADS method</u>: *f_D* is a common flavour state Kπ, K3π
 Favoured mode: Large event rate / tiny asymmetry
 Suppressed mode: Lower event rate / large asymmetry

(*) depending on strong phases

γ from trees: B \rightarrow DK

decay method Yield B/S σ(γ) L	LHCb-2007-141
$(2fb^{-1})$ In $2fb^{-1}$	
$B^{\pm} \rightarrow D^{0}(K3\pi) K^{\pm}$ ADS 61k 1.5	
$B^{\pm} \rightarrow D^{0*}(D^{0}\pi^{0}/D^{0}\gamma) K^{\pm}$ GLW+ADS 42k High bkg	
B ⁰ → D ⁰ (Kπ/hh)K ^{*0} + cc GLW+ADS 4.5k 0.5 6-25°(*) m	mass
$B^{\pm} \rightarrow D^{0}(K^{0}{}_{s}\pi^{+}\pi^{-}) K^{\pm} \qquad \begin{array}{c} GGSZ \text{ Dalitz} \\ Model \text{ indep} \end{array} 5k \qquad \begin{array}{c} 0.24 \text{ (spec)} \\ <0.7 \text{ (bbar)} \end{array} \begin{array}{c} \textbf{7-12^{\circ}(\#)+10^{\circ}} \\ \textbf{9-13^{\circ}+3^{\circ}} \end{array} \begin{array}{c} re \\ PI \end{array}$	resolution & PID crucial to
$B^{\pm} \rightarrow D^{0}(K^{+}K^{-}\pi^{+}\pi^{-}) K^{\pm}$ GLW-Dalitz 1.7k 0.9 18°	suppress bkg

Difference in the $K^0_{s}\pi\pi/K^+K^-\pi^+\pi^-$ Dalitz plots from B⁺ and B⁻ are due to

$$\left| f_D^{B^{\pm}} \right|^2 = \left| f_D + r_B e^{i \cdot (\delta \pm \gamma)} f_{\overline{D}} \right|^2$$

Clean extraction of $\gamma,\,r_{_B}$ and δ but need to assume the D^0 (f__) decay model.

For $D^{0}(K^{0}_{s}\pi\pi)$ main systematic error: 10° (model)/ 3° (CLEO-c data)

Global fit of all the channels $\sigma(\gamma) = 4.3-6.2^{\circ}$ in 2fb⁻¹ (range->syst.)

LHCb-2007-050

LHCb-2007-043

LHCb-2007-048

LHCb-2007-059

γ from loops: $B^0_{d/s} \rightarrow h^+h^-$

 Interference of b→u tree & b→d(s) penguin diagrams leads to CP violation depending on γ (Sensitive to NP)

$$A_f^{CP}(t) = \frac{A_f^{dir}\cos(\Delta m_q t) + A_f^{mix}\sin(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) - A_f^{\Delta}\sinh(\Delta \Gamma_q t/2)}$$

• In each mode A^{dir} & A^{mix} depend on mixing phase $2\beta_{d/s}$, γ , and ratio of penguin to tree amplitudes = $d e^{i\theta}$

$$\begin{aligned} A_{\pi\pi}^{dir} &= f_1(d,\theta,\gamma) \qquad A_{\pi\pi}^{mix} = f_2(d,\theta,\beta_d,\gamma) \\ A_{KK}^{dir} &= f_3(d',\theta',\gamma) \qquad A_{KK}^{mix} = f_4(d',\theta',\beta_s,\gamma) \end{aligned}$$

• $B^0 \rightarrow \pi^+\pi^-$ and $B_s^0 \rightarrow K^+K^-$ are ruled by ~same diagrams by $d \rightarrow s$ exchange (exchange and annihilation diagrams neglected) **U-spin symmetry**.

<u>Weak assumption</u>: $d = d' \pm 20\% \theta$, θ' independent

 $\beta_{d/s}$ known (measured)

decay	Yield (2fb⁻¹)	B/S	σ(γ) In 2fb⁻¹	Compare to γ from trees to get
$B^0 \rightarrow \pi^+ \pi^-$	36k	0.5		hints of NP in
$B_s^0 \rightarrow K^+K^-$	36k	1.5	10°	penguins

Charm physics

- Dedicated HLT trigger D* stream ~300 Hz of bandwidth
 - − Huge sample of $D^0 \rightarrow h^+h^-$ on tape (100 M in 2fb⁻¹)
- Calibration of RICH K/ π PID
- Charm Physics studies

 \overline{D}^0/D^0 tag with pions from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ D^0 mixing tiny in the SM / experimental evidence by BaBar&Belle (NP) ?

Study time dependence of wrong sign (DCS) $K\pi$ decays

$$r(t) \approx e^{-\Gamma t} (R_D + \sqrt{R_D} y' \cdot \Gamma t + \frac{x'^2 + {y'}^2}{4} \cdot (\Gamma t)^2)$$

Lifetime ratio of D^0 to $CP(K^+K^-)$ and non-CP($K^-\pi^+$) eigenstates => \mathbf{y}_{CP} (= y' if noCPV)

CP Violation in D⁰ \rightarrow K⁺K⁻ and $\pi^+\pi^-$ ($\leq 10^{-3}$ SM up to 1% NP)

channel	Yield (2fb ⁻¹)	B/S
$D^0 \rightarrow K^- \pi^+ + cc RS$	12.4M	0.21
$D^0 \rightarrow K^+ \pi^- + cc WS$	46.5k	2.6
$D^0 \rightarrow K^+K^- + cc$	1.6M	0.21
$D^0 \rightarrow \pi^+\pi^- + cc$	0.6M	0.38

D⁰ lifetime "improved" measurement σ (t)=45 fs

$$x = \frac{\Delta M}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma}$$

x' y' rotated resp. x y by a strong phase.

$\rightarrow \sigma x 10^{3}$	x′²	у'	У _{СР}	A _{CP}
LHCb 2 fb ⁻¹ (*)	0.14	1.95	1.1	1.1
LHCb 10fb ⁻¹ (*)	0.064	0.87	0.5	0.48
B-fact.2008	R _M =0.13	±0.27	11.3±2.7	1.2±2.5
(*) Statistical er	24			

Conclusions

LHCb is a heavy flavour precision experiment searching for New Physics in **CP Violation** and **Rare Decays**

Already with 0.5fb⁻¹ (2009) interesting results can be obtained on $B_s \rightarrow J/\psi \phi$ $\sigma(\phi_s) \sim 0.042$ $B_s \rightarrow \mu \mu$ BR limit down to SM value $B \rightarrow K^* \mu \mu$ Study A_{FB} with ~1800 events $\sigma(s_0) \sim 0.9 \text{ GeV}^2/c^4$

Aim: collect ~10fb⁻¹ by 2013

We are getting ready to run and analyse real data!!