Muon meeting November 2nd, 2000

Level 0 muon trigger performance: 4 cm layers distance

R. Le Gac. O. Leroy, T. da Silva*, A. Tsaregorodtsev presented by Olivier Leroy

CPPM, Marseille / IN2P3-CNRS

- * Bolsista da CAPES-Brasilia/Brasil
- **1.** Introduction
- **2.** Update of the L0(μ) performance
- **3.** Conclusions

INTRODUCTION

 Last muon meeting (LHCb week Milano, Sep'00), L0(μ) performance was evaluated:

- MDST data produced with SICB v222: $10^4 \text{ B} \rightarrow \mu X$, 8.10⁴ MB
- SICBDST v231, database 225r1
- MARCH'00 muon system configuration (16 cm between two layers)
- The muon group shows that 4 cm between two layers is mandatory when strips are used

• Today:

- Same data
- SICBDST v235, database 229
- 4 cm between two sensitive layers: (x,y,z) of the raw hits are over-written in the MURW bank

L0(μ **)** PERFORMANCE: DISTANCE BETWEEN 2 LAYERS=4 CM

FOI optimized for each working point

	FOI	MB retention	on = 2%	MB retention = 1%					
	optimized in	$B \! ightarrow \! \mu X$ Acc. [%]	PT Cut [GeV/c]	$B \! ightarrow \! \mu X$ Acc. [%]	PT Cut [GeV/c]				
TP-like (16 cm)	x and y	$50.4 \pm 0.9 {+0 \atop -4.8}$	$1.09 \pm 0.03 {+0.13} \\ -0$	$36.3\pm0.9^{+0}_{-4.3}$	1.27±0.03 +0 -0.13				
March'00 (16 cm)	x only	$48.6 \pm 0.8^{+0}_{-7}$	$1.14 \pm 0.03 ^{+0.6} _{-0}$	$34.1\pm0.9^{+0}_{-4.8}$	$1.32 \pm 0.08 + 0.17 - 0$				
March'00 (4 cm)	x only	$48.7{\pm}0.7 {+0\atop-0.7}$	$0.84 \pm 0.03 {+0.15 \atop -0}$	$37.0\pm0.8^{+0}_{-4.4}$	$1.49 {\pm} 0.03 {+0 \atop -0.13}$				
March'00 (4cm)	x and y	$50.2 \pm 0.6 {+0} {-2.1}$	$0.98 {\pm} 0.02 {+0.06 \atop -0}$	37.0±0.8 ⁺⁰ _4.4	$1.49 {\pm} 0.03 {+0 \atop -0.13}$				

First uncertainty comes from MC statistics.

Second uncertainties come when maximal background is applied (i.e hits $\times 2$ in M₁ and $\times 5$ in M₂-M₅)

With x AND y optimized FOI, March'00 layout (4 cm) gives similar performance to the TP-like one.
 At 2% MB ret., the y-FOI are re-opened to recover the TP performance.

L0(μ) PERFORMANCE: 16 CM

LHCb note 2000-101:

→ March'00 (16cm) is not as good as TP-like layout

L0(\mu) PERFORMANCE: 4CM

TP-like and March'00 layout give similar performance

March'00 (4cm) layout is very robust against background at 2%MB

CONCLUSIONS

- Reducing the distance between the layers when strips are used is mandatory to get performance similar to the TP one.
- → FOI have to be optimized in BOTH x AND y directions.
- → No search in the y direction introduces a relative loss of 3% on B→µX acceptance (for 2% MB retention). It has no effect at 1% MB retention.
- → At 2% MB retention, the March'00 (4cm) layout is very robust against background.

OPTIMIZED FIELDS OF INTEREST

		Nominal background							Maximal background								
		2% MB retention			1% MB retention			2% MB retention				1% MB retention					
	FOI	M1	M2	M4	M5	M1	M2	M4	M5	M1	M2	M4	M5	M1	M2	M4	M5
TP-like (16 cm)	X	5	2.5	1.5	1.5	5	2.5	1.5	1.5	5	2.5	1.5	1.5	6	2.5	0.5	0.5
	у	0.5	0.5	0.5	1.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
March'00(16cm)	X	3	3.5	1.5	1.5	2	2.5	0.5	0.5	2	2.5	1.5	1.5	1	2.5	0.5	0.5
March'00 (4cm, x)	X	3	4.5	1.5	2.5	2	3.5	1.5	1.5	3	3.5	1.5	1.5	2	1.5	0.5	1.5
March'00 (4cm)	X	3	4.5	1.5	1.5	2	3.5	1.5	1.5	3	3.5	1.5	1.5	2	1.5	0.5	0.5
	у	0.5	0.5	1.5	1.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

L0(\mu) PERFORMANCE **4**CM AND NO Y**FOI**

