

LHCbMuonSystemTDR

Schedule:

- Discussion of TDR Draft 2 LHCb week 7-11 May 2001
- Comments from the collaboration untilM ay 14
- Release of m issing support notes untilM ay 11/18
- Release of public version of support notes second half of M ay
- Preparation of finalTDR version untilM ay 17
- Submission to LHCC May 22 2001
- Presentation to LHCC
 4 July 2001

LHCC /2001-0010 LHCb TDR 4 22 May 2001
LHCO
Muon System
Technical Design Report

Outline:

- 1. Introduction
 - Physics requirem ents
 - Generaldetector structure
 - Evolution since the TP
- 2.Detector Requirements and Specifications (10 p.)
 - Background environment
 - Muon system technologies
 - Readout electronics
 - Detector layout
- 3. Physics Performance
 - Simulation Procedure
 - Performance of the L0 muon trigger
 - Muon identification
 - Reconstruction of muonic final states (B_d -> J / ψ K_s ; B_s -> $\mu\mu$)
 - Muon tagging

(5 p.)

(11 p.)

Outline (ctd.):

- 4. Prototype Results (12 p.)
 - FE-chip candidates
 - Results of M W PCs prototype tests
 - Results of RPC prototype tests
- 5.TechnicalDesign (28 p.)
 - MW PC detector design and construction
 - RPC Detector design and fabrication
 - Readout Electronics
 - Support structures and installation
 - Service Systems (Gas and HV-System)
 - Safety aspects
- 6.Project Organization (6 p.)
 - Schedule and Milestones
 - Division of responsibilities
 - Cost

Level 0 Muon Trigger:

- Station M 3: trigger seed
- Stations M 2, M 4 and M 5: muon track finding
- Station M 5: confirmation of penetrating particle (p > 5 GeV/c)
- Stations M 1 and M 2: used for the P_T -m easurement

Results on Trigger Performance:

• TDR M uon system includes realistic chamber geometry and detector response (inefficiency, dead time, signal arrival time, noise, cross talk)

-> TDR M uon System is robust and shows slight improvement in

performance compared to the TPM uon System

Beam hab muons:

- Distribution of energy and radial position of halo muons 1m upstream of IP travelling in the direction of the muon system
- M uons entering the experimental hallbehind M 5 give hits in different BX in the muon stations
- Habmuons are present in ~15% of $\frac{235000}{33000}$ the bunch crossings
- 80% of muons have p < 5 GeV/c
- In about 0.1% of the BXs halo muons cause a L0 muon trigger
- -> No significant effect

A gorithm :

- Extrapolate reconstructed tracks with p > 3GeV/c and first hits in Velo from T10 to the muon system (M 2 etc.)
- Define a field of interest (FOI) around extrapolation point and
- Define minimum number of stations with hits in FOIs

${\tt B}^{_0}\,\rightarrow\,{\tt J}\,/\psi\,(\!\mu^{_+}\!\mu^{_-})$ K $_{_{\rm S}}$:

- W ellestablished CP-violating decay from which angle β in the unitary triangle can be determined.
- J/Ψ (μ⁺μ⁻) reconstruction:
 oppositely charged tracks identified as muons.
 M ass of dimuon pair consistent with J/Ψ mass
 -> Efficiency independent of p_T
- S in ilar selection criteria for K_s and B^0 -> B^0 mass resolution 7M eV/c²
- L0 trigger acceptance of fully reconstructed events is 98%.
- L0 muon acceptance is 95%.
- ~ 40 % triggered by muon trigger abne.

~120k events/year expected in LHCb

Performance requirements:

- Efficiency within 20ns time window >99% :-> Two gaps, 15mm wire spacing
- Redundancy:
- Good ageing properties:

Design Specifications:

- 30µm wire, 15mm wire spacing,
- 5mm gap size, 2x2gaps

Construction requirem ents:

Panelflatness:	$\pm 50 \mu$ m
Gap size:	$\pm 70 \mu m$
W ire plane offset:	$\pm 150 \mu$ m
Single wire offset:	$\pm 100 \mu$ m
W ire pitch:	$\pm40\mu\text{m}$

->Two independent double gaps

->Gasmixture:Ar/CO₂/CF₄ 40:50:10

Panels:

- Key element in MW PC, ±50µm precision over 40cm x 140cm required
- Nom ex Honeycom b panels are baseline choice.
 - Good experience in tests have been made.
 - Light, robust, good glueing properties.
 - Precision panels are expensive
- O ther materials like Chempir core and polyurethanic foam under consideration

Frames:

- Solution which does not require precision on wire fixation bars has advantages
 > Precision could come from spacers introduced every 10-15 cm in the frames
- Signals for subsequent connector are grouped on wire fixation bars
- Side bars will be used to bring the Gas in

-> 2 independent gas cycles foreseen in the chamber to enhance redundancy;

W ire:

• Gold-plated tungsten wire with 60±10g tension will be used

Chamber Design

RPC design

Ageing requirements in LHCb

(including safety factors)

	Region 3	Region 4
J _{max}	11 nA cm ⁻²	4 nA cm ⁻²
Q (10 y)	1.1 C cm ⁻²	0.4 C cm ⁻²

Avalanche charge: GIF measurement

December

Rate capability measurement after accumulating 0.2 C cm⁻² (C 5 LHCb years in Region 4)

Linseed oil on bakelite

improves

Noise (less load on trigger) Dark current (less ageing) could introduce problems (Babar) Polymerization critical is an additional variable

construction more delicate extra quality control reg'd

Current and noise ok with oil. However we favor a solution without oil.

Bakelite

Measurement of volume resistivity **Performed at bakelite factory** Measurement of surface roughness

Gas Gaps

Check of oil layer (if used) Check of gas tightness and HV leaks (at the factory) Measurement of I vs. HV curve, reject gaps with too high dark currents Check uniformity with source Pairing of similar gaps

Chambers & Electronics

Cosmic ray test of the assembled chamber

FE-chip specifications:

- Peaking time ~10ns
- R_{in} : <50 Ω
- C_{det} : 40-250pF
- Noise: $\sim 2 \text{fC for } C_{det} = 250 \text{pF}$
- Rate: up to 1M H z
- Pulse width: <50ns
- Dose: up to 1M rad

Inefficiency due to ASD pulse-width

FE-chip candidates:

- PN PI SM D (reference) $(t_p=8ns, R_i=25\Omega, ENC: 1250+50e^{-}/pF)$
- SONYASD (pulse width ~90ns, radiation lim it ~ 50krad)
 SONY++ (adapted version of SONYASD, usable for some regions)
- ASDQ ($R_{in}=280\Omega$, requires modification.)
 - ASDQ ++ $(R_{in}=25\Omega, ENC:1740+37e^{-}/pF)$
 - -> Perform s in general very well
- CARIOCA $(0.25 \,\mu \,\text{CMOS}, \text{under development})$
 - t_p=7ns (pre-ampl.); R_{in} <20 Ω ;
 - very low noise:750+30e⁻/pF
 - very bw cost
 - Design/Layout completed Sep 2001
 - Finalproducts: end 2002
 - -> Prefered solution

Baseline choice: CMS BiCMOS chip

Technology	0.8 um BiCMOS				np can	Jatio
Dimensions	2.9x2.6 mm				V _{threshold} =10	00mV
Input impedance	15 ohm	δ I F			1	
Dynamic range	20 fC - 20 pC	fficien	∨ _{eff} =45.3438 d=0.434042	mv		_
Charge sensitivity	1 mV/fC	0.8				/
Equiv. Input noise	4 fC	0.6				•
Ch. to ch. time spread	< 0.35 ns	0.5				
Dead time	50 ns	0.4				
Power consumption	45 mW/channel	0.2			(
		-			•	
		0 L 38	40	4	12 44	V
LV	DS output	250				eff
		entries			Π	RMS
a. Gwrand		300				
000	And the state of t	250				
		200				
and the second s	And a second sec	150 -				
	a	100				
· Not the the		50 -				
Prototype board us	ed in beam tests (8 ch)	0108	3 109	110	111 112	113
Final board v	WIII DE 16 Ch					

Chip calibration

....

48

114

115

116 delay(ns)

50 V_{in}(mV)

0.1359

14 M ay 2001

Report to LHCC Referees

System Architecture:

- FE-boards: 7536 (with ASD and DIALOG chips) 120k phys.ch. 43k log.ch.
- Service Boards: 144 (with CAN -ELM B nodes)
- Intermediate boards: 168 26k bg.ch.
- Off Detector Elec.Boards: 168 (with SYNC chips/FPGAs)

DIALOG

D Lagnostics, time Adjuster and LOGics

OFF Detector Electronics

Support Structures

Date	Milestone
	MWPC Detectors
2002 Apr	Engineering design completed
2003 Feb	Begin chamber construction and tests
2004 Dec	Chamber construction completed
	RPC Detectors
2001 Dec	Decision on oil
2002 Apr	Engineering design completed
2003 May	Begin chamber construction and tests
2004 Dec	Chamber construction completed
	Chambers for the inner part of M1
2003 Feb	Technology choice
2004 Dec	Chamber construction complete
	Electronics
2002 Mar	CARIOCA and DIALOG design and test completed
2002 Nov	Full chain electronics test completed
2003 Feb	Begin FE-board production
2002 Nov	Begin IM, SB, ODE boards preproduction
2004 Dec	Electronics assembled and tested
	General infrastructure
2003 Dec	Iron filter installed
2004 Jun	Chamber support structure installed
	Muon Detector
2005 Aug	Commissioning completed

Institutes

Ferrara, LNF, PNPI, Rome I/Potenza

UFRJ

CBPF, CERN, Ferrara, LNF, UFRJ

Task

MWPC Detectors

M1-M3 outer part M2-M5 inner part **RPC Detectors**

M4-M5 outer part

II

Inner part of M1

Electronics

Cagliari, LNF

Firenze, Roma

CARIOCA chip	CERN, UFRJ
DIALOG chip	Cagliari
MWPC FE Boards	CBPF, PNPI, Rome I/Potenza,
RPC FE Boards	Firenze, Roma II
IM Boards	LNF
Service Boards	LNF
ODE Boards (+SYNC chip)	Cagliari, LNF
Services	
Gas system (design)	CERN
Monitoring, control (ECS)	Roma I
Experimental area infrastructures	
Chamber supports	CERN, LNF

CERN

Muon filter

ltem	Cost
MWPC Detectors	1220
RPC Detectors	260
Electronics	4040
Services (*)	1310
Muon filter	4000
TOTAL COSTS (incl. Spares & Contingency)	10830

(*) Gas and HV systems + support structures