ODE Board

Off Detector Electronics for the muon system

INFN - LNF
Servizio Elettronica Laboratori Frascati
A. Balla, M. Carletti, P. Ciambrone, G. Felici, M. Gatta

- ODE overview
- Functionalities
- Specs
- TTC system interface
- Command and clock distribution
- Measurements
- Trigger interface
- Data flow and architecture
- Performances
- DAQ Interface
- Data flow and architecture
- Performances
- ECS Interface
- GOL start-up problem
- Radiation hardness assurance
- System tests
- Conclusions

ODE overview

- LO front-end electronics stage
- Clock synchronization
- Bxalignment
- LO pipelining and buffering
- TTC system interface
- Master LHCb clock
- L0 trigger and reset signals
- Clock de-jitter and distribution
- L0 trigger interface
- Trigger Unit production
- Parallel optical link
- L1 DAQ interface
- Data formatting
- Single optical link
- FPGA LO board controller
- TTC commands decoder
- DAQ data formatting
- Test facilities and diagnostic
- ECS interface
- Initialization, monitor and debug

- CANbus link

ODE specs

- L0 front-end electronics stage
- 192 LVDS input signals
- 24 SYNC chips (mounted on piggy board)
- TTC system interface
- 1 optical receiver + 1 TTCrx chip
- Clock de-jitter and distribution
- 1 QPLL chip
- Tree network based on MC100LVEP family
- L0 trigger interface (12 traces @ 1.6Gbit/s)
- $\quad 12$ GOL chips +1 parallel optical transmitter
- L1 DAQ interface (1 trace @ 1.6Gbit/s)
- 1 GOL chip + 1 VCSel diode
- FPGA board controller
- Flash RAM based Actel FPGA (ProAsicPlus)
- 3 buses (32 bit) for SYNC and GOL interfaces
- 154 I/O pin used (99\%)
- ECS interface
- 1 ELMB board
- CANbus link on the backplane
- $2 I^{2} \mathrm{C}$ internal buses
- 6U Compact PCI card

- 10 layers motherboard with controlled impedance
- Mixed 5/3.3/2.5 V devices

TTCrx and clock distribution

TTC system signals

- TTC system interface is managed by the board controller
- Receives signals from TTCrx
- Decode broadcast command
- Bunch-ID reset (BC_res)
- LO Event ID reset (EV_res)
- L0 reset (L0_res)
\rightarrow Synchronous reset or preload for all ODE Bunch-ID counters
\rightarrow Synchronous reset for all ODE LO Event-ID counters
\rightarrow Synchronous reset for all ODE LO stages
- Distributes LO trigger and reset signals internally to the FPGA and to the SYNC chips
- The TTC reset signals do not modify the board configuration
- No TTC resets delivered to GOL chips
- ODE global reset (ODE default state) deliverable by ECS through ELMB

Clock distribution

- LHCb clock (40.08 MHz) is received through the TTCrx chip
- The ODE is a completely synchronous system
- TTCrx recovered clock must be de-jittered
- TTCrx jitter > 240 ps peak-to-peak
- Maximum allowed GOL jitter is 100 ps peak-to-peak
- QPLL chip is used to reduce the jitter (< 50 ps peak-to-peak)
- Low jitter clock distribution tree (with enable)
- MC100LVEP family @ 2.5 V
- Jitter less than 1 ps RMS
- 150 ps Typical Device-to-Device Skew (20 ps Typical Output-to-Output Skew)
- LVPECL standard
- $\mathrm{V}_{\mathrm{OH}}=1480 \mathrm{mV} \mathrm{V}_{\mathrm{OL}}=730 \mathrm{mV}$

Test setup

- LeCroy SDA6000 with active differential probe (LeCroy mod. D600AT)
- 6 GHz Bandwidth
- 20 Gsample/s on two channels
- 1 ps rms trigger jitter
- Analysis on continuous acquired data stream
- Analysis on consecutive interval unit or cycle
- Trigger jitter free
- Jitter measurements
- Per@level
- Period at a specified level for every cycle in the waveform
- Dper@level
- Adjacent cycle deviation at a specified level (cycle-to-cycle jitter) of each cycle in the waveform
- TIE@level
- Difference between the measured times of crossing a given level and the ideal expected time

Jitter measurements

- Activity on both TTCrx channels via TTCvi + TTCvx boards:
- ~ 20 MHz LOyes signal
- ~ 400 KHz LO_res and EV_res signal
- ~ 850 KHz BC_res signal
- Jitter at the GOL input well inside the specs
- Skew between clock lines < 300 ps

QPLL out
Display Cursors Measure math Analysis Utillities Help

L0 Trigger interface

Trigger data flow

- Unidirectional data transfer to trigger system
- Logical channels merging to produce Trigger Unit (TU)
- Each SYNC chip for every machine cycle (40 MHz)
- Receives and synchronizes 8 input signals
- Assigns correct Bunch Crossing identifier (BX_Id)
- Produces 10 bit data output (8 hits + 2 LSB of BX_Id)
- 2,3 or 4 SYNC chips per Trigger Unit
- 1 GOL chip per Trigger Unit
- Transmission (tx_en, tx_er) driven by one "master" SYNC
- Fast Ethernet mode (8B/10B)
- 12 GOL chips drive a parallel optical link
- 12 links @ 1.6 Gbit/s each
- Agilent HFBR772

- Test link facilities
- Fixed or pseudo-random pattern
- Check link integrity
- BER test

Trigger Unit type

- Trigger Unit configurations

Station	Region	Logical Channel per TU	SYNC per TU	Active channels per SYNC	TU per ODE (Active O.L.)	Active ODE Channels	\# ODE
M1	$\begin{aligned} & \text { R1 } \\ & \text { R2 } \\ & \text { R3 } \\ & \text { R4 } \end{aligned}$	24	3	8	8	192	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$
M2 or M3	$\begin{aligned} & \text { R1 } \\ & \text { R2 } \\ & \text { R3 } \\ & \text { R4 } \end{aligned}$	$\begin{aligned} & 28 \\ & 16 \\ & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 6 \\ 12 \\ 6 \\ 6 \end{array}$	$\begin{aligned} & 168 \\ & 192 \\ & 168 \\ & 168 \end{aligned}$	$\begin{aligned} & 8+8 \\ & 8+8 \\ & 8+8 \\ & 8+8 \end{aligned}$
M4 or M5	$\begin{aligned} & \text { R1 } \\ & \text { R2 } \\ & \text { R3 } \\ & \text { R4 } \end{aligned}$	$\begin{aligned} & 24 \\ & 14 \\ & 10 \\ & 10 \end{aligned}$	3 2 2 2	$\begin{aligned} & 8 \\ & 7 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 8 \\ \mathbf{1 2} \\ 12 \\ 12 \end{array}$	$\begin{aligned} & 192 \\ & 168 \\ & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 6+6 \\ & 4+4 \\ & 4+4 \\ & 4+4 \end{aligned}$

- Minimizing number of different PCB
- Optimize performances
- Improve maintenance
- Unique motherboard for all TU
- 12 piggy board slots
- 12 GOL chips
- 6 / 8 / 12 active optical links
- 3 different piggy boards (PB)
- 24 SYNC per ODE
- 2 / 3+3 / 4 SYNC per piggy board (Type 3/2/1)
- 120 / 168 / 192 active input signals

Trigger data format

- Trigger data format
- SYNC data merged on piggy board to produce TU
- Up to 28 data bits
- 2 LSB of BX_Id
- 2 switch bits to ensure data alignment in the trigger system

| | \|15| | | | | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ Word | 14 HIT DATA | 0 | 1 | 14 HIT DATA | 0 | 0 |
| $2^{\text {nd }}$ word | 14 HIT DATA | 0 | 1 | 14 HIT DATA | 1 | 0 |
| $3^{\text {rd }}$ word | 14 HIT DATA | 1 | 1 | 14 HIT DATA | 0 | 0 |
| $4^{\text {th }}$ word | 14 HIT DATA | 1 | 1 | 14 HIT DATA | 1 | 0 |

- PB type 1: 4 SYNC - 7 bits per SYNC $\rightarrow 28$ bits per TU

31 1615									
	SYNC \#3 ${ }_{\text {l }}$							0	

- PB type 2: 3+3 SYNC - 8 bits per SYNC $\rightarrow 24$ bits per TU

- PB type 3: 2 SYNC - 8/7/5 bits per SYNC $\rightarrow 16 / 14 / 10$ bits per TU

Trigger optical link

60 m

Trigger link performances

- Agilent HFBR772 transmitter
- Output optical power
- -8 dBm min (-4 dBm typ)
- Extinction Ratio
- 6 dB min. (7 dB typ)
- Total jitter
- $120 \mathrm{ps}_{\mathrm{p-p}} \max \left(60 \mathrm{ps}_{\mathrm{p-p}}\right.$ typ)
- ~ 100 m fiber
- $850 \mathrm{~nm}, 50 / 125 \mu \mathrm{~m}$, multimode
- $3.5 \mathrm{~dB} / \mathrm{Km}$ (TIA/EIA 568-B)
- 4 connections
- 0.75 dB per connection (TIA/EIA 568-B)
- Agilent HFBR782 receiver
- Input optical power sensitivity
- -16 dBm max (-18.5 typ)
- Input optical power saturation
- $-2 \mathrm{dBm} \min (-1 \mathrm{dBm}$ typ $)$

	Worst	Typ.	Unit
Output Optical Power	-8	-4	dBm avg.
Fiber attenuation	0.35	0.35	dB
Connectors attenuation	3	3	dB
Receiver input power	-11.35	-7.35	dBm avg.
Receiver sensitivity	-16	-18.5	dBm avg.
Power margin	4.65	11.15	dB

Test setup

- Optical to electrical converter (LeCroy mod. OE425)
- 4.5 GHz Bandwidth (500-870 nm)
- Conversion factor $0.5 \mathrm{~V} / \mathrm{mW}$ (@ 800 nm) \rightarrow slightly deviation @ 850 nm
- FC2125 standard reference receiver
- FC Golden PLL (digital) for clock recovery
- Pseudo random bit sequence (2 2^{8-1} bits)
- 24 SYNC chips and 12 active GOL chips
- 24 different seeds in PRBG
- 16 input bits per GOL

Eye Diagram

- Good datasheet agreement with short fiber
- Average power $\rightarrow-4 \mathrm{dBm}$ typ.
- Extinction ratio $\rightarrow 7 \mathrm{~dB}$ typ.
- Well open horizontal and vertical eye diagram after 100 m
- Good extinction ratio
- Good power margin (12.6 dB)
- Low attenuation (0.3 dB)

Bathtub curve

- Analysis on Time Interval Error
- Estimated BER only on time jitter
- Estimated BER lower than 10^{-16} compatible with a 60% eye open
- Deserializer TLK2501 guarantees 10^{-12} with a 50% eye opening
- Total jitter $\sim 1 / 3$ of UI dominated by deterministic component
- Real bit error test up to 10^{-12} with 99% confidence level

DAQ interface

DAQ data flow

- Unidirectional data transfer to L1 DAQ
- SYNC chips
- Measure input signal phase in LHCb clock period
- 4-bit TDC with 1.6 ns resolution
- Put data in LO buffer (40 MHz)
- Put data in LO derandomizer after L0 trigger (1 MHz)
- SYNC data format
- 32 bits for TDC data (dataword)
- 32 bits for BX_Id, EV_Id, data error (infoword)
- 32 bits output data bus
-24 SYNC X 2 accesses X 25 ns $=1200$ ns > 900 ns
- Parallel SYNC readout mode
- 2×32 bits wide buses (BUS_UP, BUS_DW)
- 12 SYNC for each bus
- LO controller
- Reads data/info words from SYNC derandomizers
- Creates L1 DAQ data frame
- Drives GOL (tx_en, tx_er)
- Ethernet mode (8B/10B)
- VCSEL diode

LO Controller

- Receives and decodes TTCrx data
- For each LOyes
- Verifies TTCrx alignment
- Generates a header word with internal BX_id and EV_id counters
- Write the header in an internal FIFO
- Up to 16 consecutive LOyes
- For each header word
- Reads SYNC datawords and infowords
- Verifies data alignment
- Generates a footer words
- Produces data frame for L1 DAQ
- Drives GOL transmission
- Test facilities
- $\mathrm{I}^{2} \mathrm{C}$ interface

L1 data frame
 н स

- Data frame is preceded by an idle character
- Header and footer words hamming coded
- Data frame is 30 words long

n
Check bit ch. n
Error flag (13 bit)

Board Address (13 bit)
Hamming code (6 bit)

Test Facilities

- DAQ-SYNC Test Mode
- Test DAQ data path
- Known patterns loaded in SYNC LO derandomizer via ECS
- "Normal" data readout by board controller
- DAQ-Internal Test Mode
- Test data link integrity and performances
- Known patterns loaded in LO board controller via ECS
- 8 bits Pseudo-random sequence
- Trigger test mode
- Test trigger link integrity and performances
- Fixed pattern defined via ECS
- 8 bits Pseudo-random sequence
- DAQ data dump
- DAQ GOL frame dumped in a internal FIFO
- DUMP mode programmable via ECS
- NO LO_YES needed in test mode
- All TTCrx signals emulated via ECS (LO_YES, BC_res, EV_res, L0_res)
- Error condition (TTCrx fault, DAQ GOL fault, SYNC error, etc.) stored in a STATUS register

DAQ link performances

- Photonics VCsel ULM850-05-TN-USMBOP
- 850 nm multimode VCsel
- Forward laser voltage $\rightarrow \mathrm{V}_{\mathrm{F}}=2 \mathrm{~V}$
- Threshold current $\quad \rightarrow \mathrm{I}_{\mathrm{th}}=1 \mathrm{~mA}$
- Slope efficiency $\quad \rightarrow \eta=0.1$ W/A
- Diff. series resistance $\rightarrow R_{s}=60 \Omega$
- SMA package
- ~ 100 m fiber
- $850 \mathrm{~nm}, 50 / 125 \mu \mathrm{~m}$, multimode
- $3.5 \mathrm{~dB} / \mathrm{Km}$ (TIA/EIA 568-B)
- 3 (4) connections
- 0.75 dB per connection (TIA/EIA 568-B)
- Receiver
- Input optical power sensitivity
- - $16 \mathrm{dBm} \max (-18 \mathrm{typ})$

Test setup

- GOL driver specs
- Programmable bias current
- Fixed modulation current $=10 \mathrm{~mA}$
- ' 1 ' level $\rightarrow \mathrm{I}_{\text {mod } 1}=\mathrm{I}_{\text {bias }}+10 \mathrm{~mA}$
- ' ${ }^{\prime}$ ' level $\rightarrow \mathrm{I}_{\text {mod0 }}=\mathrm{I}_{\text {bias }}$

- $\mathrm{I}_{\text {bias }}=1.8 \mathrm{~mA}$
- Maximum continuous current 12 mA
- Laser threshold current 1 mA
- VCsel anode voltage $=3.3 \mathrm{~V}$
- GOL driver voltage >1 V
- FC2125 standard reference receiver
- FC Golden PLL (digital) for clock recovery
- Pseudo random bit sequence (2 2^{16-1} bits)

FC

Eye diagram

- Well open eye diagram
- Good extinction ratio
- Good power margin $\rightarrow 10.7 \mathrm{~dB}$ worst (12.7 dB typ)
- Attenuation $\rightarrow 1.4 \mathrm{~dB}$

Bathtub curve

- Estimated BER lower than 10^{-16} with 60% open eye
- Total jitter @ $10^{-12} \sim 1 / 3$ UI
- Real bit error test up to 10^{-12} with 99% confidence level

ECS interface

ECS interface

- ECS interface via ELMB card
- ATmega128 μ processor with CAN controller
- CANbus line on backplane
- 1 branch with up to 16 ODE
- 2 branches with up to 10 ODE each
- ELMB on-board connection
- Global reset
- Startup (programmable)
- ECS (only way to reset TTCrx and GOL after startup)
- $2 \mathrm{I}^{2} \mathrm{C}$ bus
- 24 SYNC
- 13 GOL, TTCrx, L0 controller
- Configuration, monitor, SYNC histogram read-out
- 1 bus JTAG
- Boundary scan
- CAN transceiver powered by ODE power supply
- Optocoupler foreseen on the KVASER board (PCICAN interface) for galvanic isolation

ELMB interface

- Serial interface for local access
- RS232
- Program on ELMB flash ram
- Shell for command decoding

- CAN interface for remote access
- CANopen standard protocol
- ODE tester program
- Single Object Dictionary access via SDO or PDO
- Node status monitor and control
- Bus traffic monitor
- Scripting language console for high level command
- CAN-JTag command translator (to be implemented)
- PVSS console for ECS

GOL start-up problem

GOL start-up problem

- "It was observed by several users that the GOL might fail to start-up correctly. When that happens, a chip reset is not able to restore normal operation." [GOL manual]
- A brief history
- If CLOCK arrives before complete GOL power-up ...
- Observed in the first ODE prototype
- Enable on the clock network driven by 2.5 V
- If the GOL is powered-up after other circuits that provide input signal to the GOL ...
- Never observed on the ODE board
- ALL chip powered at 2.5 V with the exception of TTCrx, ELMB and VCsel
- When 2.5 V is OFF and 3.3 V is ON the 2.5 V power plane goes at $\sim 700 \mathrm{mV}$
- TTCrx (through FPGA input pin) partially power the 2.5V plane
- This voltage should be not enough to power partially the GOL chip
- If the power-up is too slow...
- Never observed on the ODE board
- Test power-up sequence with ramp-up ranging from 5 ms to 250 ms
- First 3.3 V ON and then 2.5 V ON

GOL start-up problem

- The recommendations:
- The power-up sequence must be validated for operating conditions identical to the ones to be used in the final systems ...
- We do not have the final power supply (Wiener Maraton)
- Anyhow power-up sequence can be defined in the final power supply
- Use CRT4T ...
- 13 GOL on the ODE motherboard
- 13 chips
- 13 control line
- Also VCsel needed a CRT4T
- Huge change in the layout !!!

It is really necessary?

Radiation hardness assurance

Muon Radiation Environment

	Total dose (Rad) $(10$ years)	1 MeV Neutron eq. $(10$ years)	Hadrons $>20 \mathrm{MeV}$ $(10$ years)
M1 (IB/ODE)	$7-7.9 \times 10^{3}$	$9-9.8 \times 10^{11}$	$4.3-5 \times 10^{10}$
M2 (IB/ODE)	$1.7-2.2 \times 10^{3}$	$3.2-3.4 \times 10^{11}$	$1.8-1.9 \times 10^{10}$
M3 (IB/ODE)	$580-680$	1.8×10^{11}	$7.3-7.9 \times 10^{9}$
M4 (IB/ODE)	$180-390$	$1.2-1.9 \times 10^{11}$	$2.6-5.3 \times 10^{9}$
M5 (IB/ODE)	$130-320$	$2.5-2.6 \times 10^{11}$	$4.3-4.5 \times 10^{9}$
Bunker	$400-700$	$5.6-9.6 \times 10^{11}$	$1.5-2.9 \times 10^{10}$

Component	Tested by	Tech.
GOL	CERN MIC	Rad-Tol
TTCrx	CERN MIC	Rad-Tol
QPLL	CERN MIC	Rad-Tol
SYNC	INFN-Cagliari	Rad-Tol
ELMB board	ATLAS	COTS
VCsel ULM850-05	LHCB ST	COTS
Agilent transmitter HFBR772	LHCb Muon Marseille	COTS
True-light PIN-preamp TRR-1B43-000	CERN	COTS
JTAG controller SN74LVT8980	ATLAS	COTS
Flash RAM AT45DB041B	LHCb Muon INFN-Roma1	COTS
Actel ProAsicPlus FPGA APA300	LHCb Muon INFN - LNF	COTS
Clock Driver MC100LVEP111	LHCb Muon INFN - LNF	COTS
Clock Driver MC100LVEP14	LHCb Muon INFN - LNF	COTS

- Safety factor 2 due to simulation included
- M1 now in a safer environment
- Total Integrated Dose (TID) of few Krad - Not a main concern in modern devices
- More stringent requirements for SEE and NIEL effect
- Functional or destructive failures
- SEL immune
- Long term performances degradation

TEST setup

 4HCp
Beam Area

- DUT are mounted on three types of piggy board (up to 4 devices per board)
- Piggy boards are hosted on a single motherboard in the beam area
- Control board and LVDS drivers/receivers are 2 meters away from the beam spot
- The control board allows:
- To power DUT (3.3 $\mathrm{V}, 2.5 \mathrm{~V}, 1.5 \mathrm{~V}$) via on board regulators
- To monitor DUT I/O and core currents via 11 bit ADC (1 mA resolution)
- To send known patterns to DUT and to receive DUT output signals
- To verify sent and received patterns, counting the errors
- To write and read DUT RAM blocks
- To communicate via RS232 with a computer for settings, monitor and data readout

TEST logic

- FPGA Logic Test
- 3 "regular" shift registers + 1 "TMR" shift register implemented in the FPGA
- 1024 bit shift registers in APA FPGA (75% of flip-flops)
- 3 different patterns used
- " 0 ", " 1 " pattern to verify different sensitivity
- "01" pattern to verify clock upset and control logic upset
- Shift register clocked at 1 MHz
- Error forced every 24-1 bits for self-testing
- I/O and Core current monitored
- FPGA RAM test
- Static test comparing pre-irradiation and post-irradiation memory bit maps
- APA SRAM block configured as 1x4096 bit
- Clock Driver Test
- Clock at 1 MHz
- 1 output channel per device observed

Beam parameter

- Proton beam at Louvain la Neuve Cyclotron
- Energy: ~ 70 MeV
- Beam size: $9 \mathrm{~cm} \varnothing$
- 4 devices irradiated
- Nominal flux used
- 5×10^{7} protons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ up to 10^{11} protons cm^{-2}
-5×10^{8} protons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ up to 6×10^{11} protons cm^{-2}
- Fluence of 6×10^{11} protons cm^{-2} correspond to:
- $\sim 6 \times 10^{11}$ "energetic" hadrons (~ 200 years of LHCb muon life)
- ~ 68.5 krad of TID (~ 300 years of LHCb muon life)
- $\sim 9 \times 10^{11}$ neutrons cm^{-2} for NIEL (~ 10 years of LHCb muon life)

APA test data

	Device A			Device B			Device C			Device D		
Fluence $\mathrm{p} / \mathrm{cm}^{2}$	" 0 " pattern	"1" pattern	"01" pattern	"0" pattern	$\begin{gathered} \text { "1" } \\ \text { pattern } \end{gathered}$	"01" pattern	"0" pattern	pattern	"01" pattern	"0" pattern	pater	"01" pattern
10^{11}	0	1	2	0	5	2	1	4	3	0	5	1
2×10^{11}	0	5	1	2	0	3	0	2	7	2	3	4
3×10^{11}	2	3	4	5	2	2	2	2	1	1	4	2
4×10^{11}	-	-	-	-	-	-	2	2	3	0	4	4
5×10^{11}	-	-	-	-	-	-	2	4	4	0	0	5
6×10^{11}	-	-	-	-	-	-	1	1	1	0	0	1
TOT	2	9	7	7	7	7	8	15	19	3	16	17
$\begin{gathered} \sigma_{\text {bit }} \\ \left(10^{-14}\right) \end{gathered}$	0.65	2.9	2.3	2.3	2.3	2.3	1.3	2.4	3.1	0.5	2.6	2.8

- Low SEU cross section per bit \rightarrow ~ 10^{-14}
- "1" pattern slightly more sensitive (?)
- No SEU in TMR shift registers
- No clock or control logic upset observed
- No SEL detected

APA test data

- Core current start to increase at a fluence of 2.5×10^{11} protons $/ \mathrm{cm}^{2}$ ($\sim 35 \mathrm{krad}$)
- Devices continue to work

- SEU RAM cross section per bit ~ 10^{-13}

	Device A	Device B	Device C	Device D
Fluence $\mathrm{p} / \mathrm{cm}^{2}$	Ram Upset	Ram Upset	Ram Upset	Ram Upset
10^{11}	$\mathbf{2 7}$	$\mathbf{4 0}$	$\mathbf{3 8}$	$\mathbf{4 2}$
2×10^{11}	$\mathbf{5 3}$	$\mathbf{3 0}$	-	
6×10^{11}	-	-	$\mathbf{1 5 3}$	$\mathbf{1 9 9}$
TOT	$\mathbf{8 0}$	$\mathbf{7 0}$	$\mathbf{1 9 1}$	$\mathbf{2 4 1}$
$\sigma_{\text {bit }}$ $\left(10^{-14}\right)$	9.7	$\mathbf{8 . 5}$	$\mathbf{7 . 8}$	$\mathbf{9 . 8}$

Clock Driver test data

- MC100LVEP111
- No SEU observed up to a fluence of 6×10^{11} protons $/ \mathrm{cm}^{2}$
- Cross section per bit $<8.3 \times 10^{-13} \mathrm{~cm}^{2}$ protons $^{-1}$ bit $^{-1}$
- No SEL detected
- No current change @ 6×10^{11} protons/cm²
- MC100LVEP14
- 7 SEU observed with a fluence of 6×10^{11} protons $/ \mathrm{cm}^{2}$
- Cross section per bit $=5.8 \times 10^{-12} \mathrm{~cm}^{2}$ protons ${ }^{-1}$ bit $^{-1}$
- No SEL detected
- No current change @ 6×10^{11} protons/cm²

ODE components

Component	Tested by		TID	SEE	reference
GOL	CERN MIC	Rad-Tol			
TTCrx	CERN MIC	Rad-Tol			Proceedings of the 6th Workshop on Electronics for LHC Experiments
QPLL	CERN MIC	Rad-Tol			http://www.cern.ch/proj-qpll/images/ qpll2IrradData.pdf
SYNC	INFN - Cagliari	Rad-Tol			Note in preparation
ELMB board	ATLAS	COTS	14 krad	$\begin{array}{ll} 6 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2} & \text { (1 MeV equivalent) } \\ 1 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2} & (60 \mathrm{MeV}) \end{array}$	ATLAS Internal Working Note DCS- IWN20, DCS- IWN21, DCS- IWN23
VCsel ULM850-05	LHCB ST	COTS	300 krad	$3.6 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}$ (1 MeV equivalent)	LHCb note 2004-037
Agilent transmitter HFBR772	LHCb Muon Marseille	COTS	15 krad	$2.5 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2}(250 \mathrm{MeV}$)	LHCb note 2004-013
True-light PIN-preamp TRR-1B43-000	CERN	COTS	1 Mrad	$7 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2} \quad$ (1 MeV equivalent) $1.2 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2}(60 \mathrm{MeV})$	Proceedings of the 9th Workshop on Electronics for LHC Experiments,
JTAG controller SN74LVT8980	ATLAS	COTS	30 krad	$2.3 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2}(70 \mathrm{MeV})$	http://atlas.web.cern.ch/Atlas/GROUPS/FRO NTEND/radhard_MUON_TGC.htm
$\begin{gathered} \text { Flash RAM } \\ \text { AT45DB041B } \end{gathered}$	LHCb Muon INFN - Roma1	COTS	20 krad	$2 \times 10^{11} \mathrm{p} / \mathrm{cm}^{\mathbf{2}}$ (60 MeV)	Note in preparation
Actel ProAsicPlus FPGA APA300	LHCb Muon INFN - LNF	COTS	68 krad	$\begin{array}{ll} 9 \times 10^{11} \mathrm{n} / \mathrm{cm}^{2} & (1 \mathrm{MeV} \text { equivalent) } \\ 6 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2} & (70 \mathrm{MeV}) \end{array}$	Note in preparation
Clock Driver MC100LVEP111	LHCb Muon INFN - LNF	COTS	68 krad	$9 \times 10^{11} \mathrm{n} / \mathrm{cm}^{2} \quad(1 \mathrm{MeV}$ equivalent) $6 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2} \quad(70 \mathrm{MeV})$	Note in preparation
Clock Driver MC100LVEP14	LHCb Muon INFN - LNF	COTS	68 krad	$\begin{array}{\|ll} \hline 9 \times 10^{11} \mathrm{n} / \mathrm{cm}^{2} & \text { (1 MeV equivalent) } \\ 6 \times 10^{11} \mathrm{p} / \mathrm{cm}^{2} & (70 \mathrm{MeV}) \\ \hline \end{array}$	Note in preparation

- NO SEL detected
- No performances degradation observed for NIEL

SEE estimation...

- FPGA Hard SEE
- Possible ODE permanent damage
- Main worry in the first flash-based FPGA
- From Actel tests no latch-up has been observed for LET higher than 100 MeV $\mathrm{cm}^{2} / \mathrm{mg}$ for APA FPGA
- This threshold should guarantee our system free from SEL
- FPGA SOFT SEE
- Possible loss of ODE functionalities
- 148 FPGA in the muon L0 electronics
- Each FPGA uses
- ~ 2000 flip-flops (without TMR)
- 512 RAM bit
- In the worst case
- $3 \times 10^{-14} \times 5 \times 10^{10} \times 2000 \times 148=444$ flip-flop upsets in 10 years
- $10^{-13} \times 3 \times 10^{10} \times 512 \times 148=227$ RAM bit upsets in 10 years
- The foreseen TMR technique and EDAC coding allow to improve system reliability
- Clock Upset
- Possible ODE misalignment and GOL loss of lock
- 6 MC100LVEP14 (4 channels) per ODE (148 board)
- $5.8 \times 10^{-12} \times 5 \times 10^{10} \times 4 \times 6 \times 148=1030$ upsets in 10 years

SEE estimation...

- HFBR772 upset
- "The cross-section for single event upsets is equal to $(4.5 \pm 0.1) \times 10^{-10} \mathrm{~cm}^{2}$ per single optical link. The corresponding inefficiency on the level-0 muon trigger is below 10-10 and therefore negligible." [LHCb note 2004-013]
- GOL, TTCrx, QPLL and SYNC upset
- Rad-Tol technology
- Negligible effect
- ELMB upset
- Loss of ECS communication
- No functional problems on the ODE (!)
- ELMB can be reset through
- Internal watchdog system
- A "reset board" seated in the crate and controllable by ECS
- JTag controller and Flash Ram upset
- No functional problems on the ODE

TEST ...

ODE - LO muon trigger test

- ODE (first prototype) and the muon trigger processing board with 100 m ribbon fiber
- System clock generated by a TTCvx
- Telecom frequency (77.76 MHz)
- Maxim PLL+VCXO for clock de-jitter
- Data generated by the SYNC chips using their test features
- Transmission of consecutive IDLE words
- Transmission of fixed patterns wrote on SYNC through I²C interface
- Transmission of a Pseudo-random pattern generated on SYNC
- Received Data monitored on a PC and oscilloscope TDS694C
- Check data integrity and synchronization
- Well open eye diagram
- Max peak-to-peak jitter 186 ps (o ~ 21 ps)

System Test

- 1 Muon Chamber
- 12 CARDIAC (96 channels)
- 1 IB (+ TB) on custom crate
- 1 ODE (+ TB) on custom crate
- 1 VME crate with
- 1 SB
- 1 TTCvx
- 1 TTCvi
- Clock generator (custom) board
- Optical Receiver board (custom)
- 1 interface VME-PCI
- Control PC with
- PVSS
- KVASER board (PCI-CAN interface)
- ODE control software
- Pattern generator and Logic Analyzer

Chain setup

Test performed

- TTC interface
- TTC command (LOyes, LO_res, BC_res, Ev_res) sent using TTCvi+TTCvx
- Command correctly received, decoded and distributed on the ODE
- Front-end, trigger and DAQ interfaces
- Using the pulse functionality on SB and DIALOG,
- generate specific DIALOG inputs and find them in the right place at the end of the chain
- generate specific DIALOG inputs put in specific logical combination among them and find the right logical channel (only) in the right place at the end of the chain. 2 kinds of combinations were possible:
- 2 logical channels starting from 4 physical channels ($2 \times O R 2$)
- 1 logical channel starting from 4 physical channels (1xOR4)
- Data checked directly at the end of the chain following the 2 possible data links (Trigger and DAQ)
- Both checks performed by reading data on a FIFO in the optical receiver board
- Verifying correctness of data frame and synchronization
- ECS interface
- ODE configuration
- SYNC histogram read-back

Production test

- Quality assurance on board assembly (factory)
- TTC interface test
- TTCvi + TTCvx
- Synchronization and command decoding test
- Front-end input test
- SYNC chip already tested
- Patter generator or random pulses
- Histogram from SYNC
- Trigger and DAQ link test
- BERT up to 10-12 using ODE test features
- Custom 6U VME board
- 8 full duplex optical channel
- VirtexIIPRO
- 8 full duplex serial transceivers @3.125 Gbit/s
- IBM 400MHz PowerPCTM
- 400 MHz clock rate
- TTCrx + QPLL for system synchronization
- 528 Kbytes fast dual port RAM
- ECS interface test
- Board initialization and test via CANbus interface

Conclusions

- ODE board fully characterized
- Architecture well defined
- Low jitter clock network
- 50 ps peak-to-peak
- Low BER optical links for trigger and DAQ
- 10^{-16} estimated BER
- 10^{-12} measured BER
- Good radiation hardness assurance
- ODE board fulfils the experiment requirements
- L0 requirements
- Buffering, consecutive triggers, alignment check, test features, ...
- Trigger and DAQ systems requirements
- Formatting, transmission quality, ...
- Ready for the pre-production
- Production test-stand defined

Spare slides

GOL interconnection

TTC decode

- Receive signals from TTCrx
- Decode broadcast command
- Bunch-ID reset (BC_res)
- LO Event ID reset (EV_res)
- LO reset (L0_res)
- Distribute resets and L0 trigger signals
- Internal 12 bit Bunch-ID counter (BC_Id)
- Synchronous reset with BC_res
- Predefined BC_offset loaded at BC_res
- Internal 12 bit L0 Event-ID counter (LO_Id)
- Synchronous reset with EV_res or LO_res
- First L0 trigger after a counter reset \Rightarrow LO_Id=0
- For each L0 trigger
- Check internal BC_Id vs TTCrx BCnt
- Generate header word (25 bit)
- 1 check bit + 12 bit L0_Id + 12 bit BC_Id
- Generate header FIFO write

FIFO header

- Allow consecutive L0 trigger
- 16 words deep
- 32/64 in final version (?)
- Data protected by Hamming code
- Single error detection and correction
- Double error detection
- 6 extra code bit
- Data discharged at FIFO full
- FIFO reset with LO_res

CHK footer

- Receive INFO word
- 4 bit SYNC BX_Id
- 4 bit SYNC EV_Id
- 2 bit SYNC data error (double error detection)
- Generate 4 footer check words
- BX_Id alignment of each SYNC vs internal BC_Id (24 bit)
- EV_Id alignment of each SYNC vs internal LO_Id (24 bit)
- Data error of each SYNC + internal FIFO error (25 bit)
- Board address + Error flags (not yet implemented)
- Footer protected by Hamming code
- Calculate frame checksum
- 32 bit adder without carry
- Header
- 24 data words
- 4 footer check words

Scan logic

- Scan start if header FIFO is not empty
- Drive GOL transmission
- Read header FIFO
- Store BC_Id and LO_Id in internal registers
- Send hamming header to GOL
- Read SYNC chip in parallel mode
- Drive dataswitch to redirect BUS_UP and BUS_DW on internal buses
- For the first 12 clock cycles
- Receive data word on BUS_UP
- Receive info word on BUS_DW
- For the second 12 clock cycles
- Receive data word on BUS_DW
- Receive info word on BUS_UP
- Send data words to GOL with 1-level pipeline
- Read and send footer check words and checksum to GOL

$\mathrm{I}^{2} \mathrm{C}$ interface

- I2C interface implemented on LO controller
- Write cycle

- Read cycle

Start from master

ACK from slave

