ODE Board

Off Detector Electronics for the muon system

INFN - LNF
Servizio Elettronica Laboratori Frascati
A. Balla, M. Carletti, P. Ciambrone, G. Felici, M. Gatta
Outline

- ODE overview
 - Functionalities
 - Specs

- TTC system interface
 - Command and clock distribution
 - Measurements

- Trigger interface
 - Data flow and architecture
 - Performances

- DAQ Interface
 - Data flow and architecture
 - Performances

- ECS Interface

- GOL start-up problem

- Radiation hardness assurance

- System tests

- Conclusions
ODE overview

- **L0 front-end electronics stage**
 - Clock synchronization
 - Bx alignment
 - L0 pipelining and buffering
- **TTC system interface**
 - Master LHCb clock
 - L0 trigger and reset signals
- **Clock de-jitter and distribution**
- **L0 trigger interface**
 - Trigger Unit production
 - Parallel optical link
- **L1 DAQ interface**
 - Data formatting
 - Single optical link
- **FPGA L0 board controller**
 - TTC commands decoder
 - DAQ data formatting
 - Test facilities and diagnostic
- **ECS interface**
 - Initialization, monitor and debug
 - CANbus link
• L0 front-end electronics stage
 – 192 LVDS input signals
 – 24 SYNC chips (mounted on piggy board)

• TTC system interface
 – 1 optical receiver + 1 TTCrx chip

• Clock de-jitter and distribution
 – 1 QPLL chip
 – Tree network based on MC100LVEP family

• L0 trigger interface (12 traces @ 1.6Gbit/s)
 – 12 GOL chips + 1 parallel optical transmitter

• L1 DAQ interface (1 trace @ 1.6Gbit/s)
 – 1 GOL chip + 1 VCSel diode

• FPGA board controller
 – Flash RAM based Actel FPGA (ProAsicPlus)
 – 3 buses (32 bit) for SYNC and GOL interfaces
 – 154 I/O pin used (99%)

• ECS interface
 – 1 ELMB board
 – CANbus link on the backplane
 – 2 I²C internal buses

• 6U Compact PCI card
 – 10 layers motherboard with controlled impedance
 – Mixed 5/3.3/2.5 V devices
TTCrx and clock distribution
TTC system signals

- TTC system interface is managed by the board controller
 - Receives signals from TTCrx
 - Decode broadcast command
 - Bunch-ID reset (BC_res) → Synchronous reset or preload for all ODE Bunch-ID counters
 - L0 Event ID reset (EV_res) → Synchronous reset for all ODE L0 Event-ID counters
 - L0 reset (L0_res) → Synchronous reset for all ODE L0 stages
 - Distributes L0 trigger and reset signals internally to the FPGA and to the SYNC chips

- The TTC reset signals do not modify the board configuration
 - No TTC resets delivered to GOL chips
 - ODE global reset (ODE default state) deliverable by ECS through ELMB

![Diagram of TTC system signals](image-url)
Clock distribution

- LHCb clock (40.08 MHz) is received through the TTCrx chip
 - The ODE is a completely synchronous system
- TTCrx recovered clock must be de-jittered
 - TTCrx jitter > 240 ps peak-to-peak
 - Maximum allowed GOL jitter is 100 ps peak-to-peak
- QPLL chip is used to reduce the jitter (< 50 ps peak-to-peak)
- Low jitter clock distribution tree (with enable)
 - MC100LVEP family @ 2.5 V
 - Jitter less than 1 ps RMS
 - 150 ps Typical Device-to-Device Skew (20 ps Typical Output-to-Output Skew)
 - LVPECL standard
 - $V_{OH} = 1480 \text{ mV} \quad V_{OL} = 730 \text{ mV}$
Test setup

- LeCroy SDA6000 with active differential probe (LeCroy mod. D600AT)
 - 6 GHz Bandwidth
 - 20 Gsample/s on two channels
 - 1 ps rms trigger jitter
 - Analysis on continuous acquired data stream
 - Analysis on consecutive interval unit or cycle
 - Trigger jitter free

- Jitter measurements
 - Per@level
 - Period at a specified level for every cycle in the waveform
 - Dper@level
 - Adjacent cycle deviation at a specified level (cycle-to-cycle jitter) of each cycle in the waveform
 - TIE@level
 - Difference between the measured times of crossing a given level and the ideal expected time
Jitter measurements

- Activity on both TTCrx channels via TTCvi + TTCvx boards:
 - \(~ 20\) MHz L0yes signal
 - \(~ 400\) KHz L0_res and EV_res signal
 - \(~ 850\) KHz BC_res signal

- Jitter at the GOL input well inside the specs

- Skew between clock lines < 300 ps

TTCrx out

QPLL out

GOL input

<table>
<thead>
<tr>
<th></th>
<th>per@lv</th>
<th>dper@lv</th>
<th>TIE@lv</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-p</td>
<td>294 ps</td>
<td>462 ps</td>
<td>294 ps</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>28.6 ps</td>
<td>45.3 ps</td>
<td>28.6 ps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>per@lv</th>
<th>dper@lv</th>
<th>TIE@lv</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-p</td>
<td>52 ps</td>
<td>90 ps</td>
<td>52 ps</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>5.5 ps</td>
<td>9.6 ps</td>
<td>5.5 ps</td>
</tr>
</tbody>
</table>
L0 Trigger interface
Trigger data flow

- Unidirectional data transfer to trigger system
 - Logical channels merging to produce Trigger Unit (TU)

- Each SYNC chip for every machine cycle (40 MHz)
 - Receives and synchronizes 8 input signals
 - Assigns correct Bunch Crossing identifier (BX_Id)
 - Produces 10 bit data output (8 hits + 2 LSB of BX_Id)

- 2,3 or 4 SYNC chips per Trigger Unit

- 1 GOL chip per Trigger Unit
 - Transmission (tx_en, tx_er) driven by one "master" SYNC
 - Fast Ethernet mode (8B/10B)

- 12 GOL chips drive a parallel optical link
 - 12 links @ 1.6 Gbit/s each
 - Agilent HFBR772

- Test link facilities
 - Fixed or pseudo-random pattern
 - Check link integrity
 - BER test
Trigger Unit type

Trigger Unit configurations

<table>
<thead>
<tr>
<th>Station</th>
<th>Region</th>
<th>Logical Channel per TU</th>
<th>SYNC per TU</th>
<th>Active channels per SYNC</th>
<th>TU per ODE (Active O.L.)</th>
<th>Active ODE Channels</th>
<th># ODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>R1</td>
<td>24</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>192</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>M2 or M3</td>
<td>R1</td>
<td>28</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>168</td>
<td>8 + 8</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>16</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>192</td>
<td>8 + 8</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>28</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>168</td>
<td>8 + 8</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>28</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>168</td>
<td>8 + 8</td>
</tr>
<tr>
<td>M4 or M5</td>
<td>R1</td>
<td>24</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>192</td>
<td>6 + 6</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>14</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>168</td>
<td>4 + 4</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>120</td>
<td>4 + 4</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>120</td>
<td>4 + 4</td>
</tr>
</tbody>
</table>

- **Minimizing number of different PCB**
 - Optimize performances
 - Improve maintenance

- **Unique motherboard for all TU**
 - 12 piggy board slots
 - 12 GOL chips
 - 6 / 8 / 12 active optical links

- **3 different piggy boards (PB)**
 - 24 SYNC per ODE
 - 2 / 3+3 / 4 SYNC per piggy board (Type 3/2/1)
 - 120 / 168 / 192 active input signals
Trigger data format

- Trigger data format
 - SYNC data merged on piggy board to produce TU
 - Up to 28 data bits
 - 2 LSB of BX_Id
 - 2 switch bits to ensure data alignment in the trigger system

<table>
<thead>
<tr>
<th>Word</th>
<th>BX_Id</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Hit</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Hit</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Hit</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>Hit</td>
<td></td>
</tr>
</tbody>
</table>

- PB type 1: 4 SYNC – 7 bits per SYNC → 28 bits per TU

- PB type 2: 3+3 SYNC – 8 bits per SYNC → 24 bits per TU

- PB type 3: 2 SYNC – 8/7/5 bits per SYNC → 16/14/10 bits per TU
Trigger optical link

- ODE transmitter
- 12 links ribbon cables
- Rack P.P. MPO-MPO
- Cavern P.P. MPO-MPO
- Wall
- 8 ribbon cables
- MPO-SC Cassette
- Splitted optical cable
- Processing Board Receiver
- 30 m
- 60 m
- 10 m
- 0.5 m

Svc 15 July 2005
Trigger link performances

- Agilent HFBR772 transmitter
 - Output optical power
 - -8 dBm min (-4 dBm typ)
 - Extinction Ratio
 - 6 dB min. (7 dB typ)
 - Total jitter
 - 120 ps$_{p-p}$ max (60 ps$_{p-p}$ typ)

- ~100 m fiber
 - 850 nm, 50/125 μm, multimode
 - 3.5 dB/Km (TIA/EIA 568-B)

- 4 connections
 - 0.75 dB per connection (TIA/EIA 568-B)

- Agilent HFBR782 receiver
 - Input optical power sensitivity
 - -16 dBm max (-18.5 typ)
 - Input optical power saturation
 - -2 dBm min (-1 dBm typ)

<table>
<thead>
<tr>
<th></th>
<th>Worst</th>
<th>Typ.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Optical Power</td>
<td>-8</td>
<td>-4</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Fiber attenuation</td>
<td>0.35</td>
<td>0.35</td>
<td>dB</td>
</tr>
<tr>
<td>Connectors attenuation</td>
<td>3</td>
<td>3</td>
<td>dB</td>
</tr>
<tr>
<td>Receiver input power</td>
<td>-11.35</td>
<td>-7.35</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>-16</td>
<td>-18.5</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Power margin</td>
<td>4.65</td>
<td>11.15</td>
<td>dB</td>
</tr>
</tbody>
</table>
Test setup

- Optical to electrical converter (LeCroy mod. OE425)
 - 4.5 GHz Bandwidth (500 – 870 nm)
 - Conversion factor 0.5 V/mW (@ 800 nm) → slightly deviation @ 850 nm
 - FC2125 standard reference receiver
 - FC Golden PLL (digital) for clock recovery

- Pseudo random bit sequence (2^{28}-1 bits)
 - 24 SYNC chips and 12 active GOL chips
 - 24 different seeds in PRBG
 - 16 input bits per GOL
Eye Diagram

• Good datasheet agreement with short fiber
 – Average power → -4 dBm typ.
 – Extinction ratio → 7 dB typ.

• Well open horizontal and vertical eye diagram after 100m
 – Good extinction ratio
 – Good power margin (12.6 dB)
 – Low attenuation (0.3 dB)

Average power ~ 490 µW (-3.1 dBm)
Extinction ratio = 7.1 dB

Average power ~ 453 µW (-3.4 dBm)
Extinction ratio = 7.3 dB
Bathtub curve

- Analysis on Time Interval Error
 - Estimated BER only on time jitter

- Estimated BER lower than 10^{-16} compatible with a 60% eye open
 - Deserializer TLK2501 guarantees 10^{-12} with a 50% eye opening

- Total jitter ~ 1/3 of UI dominated by deterministic component

- Real bit error test up to 10^{-12} with 99% confidence level

BER ~ 10^{-16} @ eye opening > 60%
Total jitter ~ 210 ps @ BER 10^{-12}

~ 100 m fiber
2 inter-connections

BER ~ 10^{-16} @ eye opening > 60%
Total jitter ~ 215 ps @ BER 10^{-12}

4 m fiber
1 inter-connection

15 July 2005
DAQ interface
DAQ data flow

- **Unidirectional data transfer to L1 DAQ**
 - SYNC chips
 - Measure input signal phase in LHCb clock period
 - 4-bit TDC with 1.6 ns resolution
 - Put data in L0 buffer (40 MHz)
 - Put data in L0 derandomizer after L0 trigger (1 MHz)
 - SYNC data format
 - 32 bits for TDC data (dataword)
 - 32 bits for BX_Id, EV_Id, data error (infoword)
 - 32 bits output data bus
 - 24 SYNC X 2 accesses X 25 ns = 1200 ns > 900 ns
 - Parallel SYNC readout mode
 - 2 x 32 bits wide buses (BUS_UP, BUS_DW)
 - 12 SYNC for each bus
 - L0 controller
 - Reads data/info words from SYNC derandomizers
 - Creates L1 DAQ data frame
 - Drives GOL (tx_en, tx_er)
 - Ethernet mode (8B/10B)
 - VCSEL diode
L0 Controller

- Receives and decodes TTCrx data
- For each L0yes
 - Verifies TTCrx alignment
 - Generates a header word with internal BX_id and EV_id counters
 - Write the header in an internal FIFO
 - Up to 16 consecutive L0yes
- For each header word
 - Reads SYNC datawords and infowords
 - Verifies data alignment
 - Generates a footer words
 - Produces data frame for L1 DAQ
 - Drives GOL transmission
- Test facilities
- I²C interface
L1 data frame

- Data frame is preceded by an idle character
- Header and footer words hamming coded
- Data frame is 30 words long
Test Facilities

- DAQ-SYNC Test Mode
 - Test DAQ data path
 - Known patterns loaded in SYNC L0 derandomizer via ECS
 - “Normal” data readout by board controller

- DAQ-Internal Test Mode
 - Test data link integrity and performances
 - Known patterns loaded in L0 board controller via ECS
 - 8 bits Pseudo-random sequence

- Trigger test mode
 - Test trigger link integrity and performances
 - Fixed pattern defined via ECS
 - 8 bits Pseudo-random sequence

- DAQ data dump
 - DAQ GOL frame dumped in a internal FIFO
 - DUMP mode programmable via ECS

- NO L0_YES needed in test mode

- All TTCrx signals emulated via ECS (L0_YES, BC_res, EV_res, L0_res)

- Error condition (TTCrx fault, DAQ GOL fault, SYNC error, etc.) stored in a STATUS register
DAQ link performances

- **Photonics VCSEL ULM850-05-TN-USMBOP**
 - 850 nm multimode VCSEL
 - Forward laser voltage $V_F = 2 \text{ V}$
 - Threshold current $I_{th} = 1 \text{ mA}$
 - Slope efficiency $\eta = 0.1 \text{ W/A}$
 - Diff. series resistance $R_s = 60 \Omega$
 - SMA package

- **~ 100 m fiber**
 - 850 nm, 50/125 μm, multimode
 - 3.5dB/Km (TIA/EIA 568-B)

- **3 (4) connections**
 - 0.75 dB per connection (TIA/EIA 568-B)

- **Receiver**
 - Input optical power sensitivity
 - -16 dBm max (-18 typ)
Test setup

- **GOL driver specs**
 - Programmable bias current
 - Fixed modulation current = 10 mA
 - ’1’ level → $I_{\text{mod1}} = I_{\text{bias}} + 10$ mA
 - ’0’ level → $I_{\text{mod0}} = I_{\text{bias}}$

- $I_{\text{bias}} = 1.8$ mA
 - Maximum continuous current 12 mA
 - Laser threshold current 1 mA

- VCsel anode voltage = 3.3 V
 - GOL driver voltage > 1 V

- FC2125 standard reference receiver

- FC Golden PLL (digital) for clock recovery

- Pseudo random bit sequence (2^{16}-1 bits)
Well open eye diagram
Good extinction ratio
Good power margin → 10.7dB worst (12.7 dB typ)
Attenuation → 1.4 dB

Average power ~ 412 μW (-3.9 dBm)
Extinction ratio = 8.3 dB

Average power ~ 297 μW (-5.3 dBm)
Extinction ratio = 8.8 dB

1 m fiber

~ 110 m fiber
4 inter-connections
Bathtub curve

- Estimated BER lower than 10^{-16} with 60% open eye
- Total jitter $@ 10^{-12} \sim \frac{1}{3}$ UI
- Real bit error test up to 10^{-12} with 99% confidence level

BER $\sim 10^{-16}$ @ eye opening $> 60%$
Total jitter ~ 237 ps @ BER 10^{-12}

~ 110 m fiber
4 inter-connections

BER $\sim 10^{-16}$ @ eye opening $> 60%$
Total jitter ~ 233 ps @ BER 10^{-12}
ECS interface
ECS interface

- ECS interface via ELMB card
 - ATmega128 µprocessor with CAN controller
 - CANbus line on backplane
 - 1 branch with up to 16 ODE
 - 2 branches with up to 10 ODE each

- ELMB on-board connection
 - Global reset
 - Startup (programmable)
 - ECS (only way to reset TTCrx and GOL after startup)
 - 2 I2C bus
 - 24 SYNC
 - 13 GOL, TTCrx, L0 controller
 - Configuration, monitor, SYNC histogram read-out
 - 1 bus JTAG
 - Boundary scan

- CAN transceiver powered by ODE power supply
 - Optocoupler foreseen on the KVASER board (PCI-CAN interface) for galvanic isolation
ELMB interface

- Serial interface for local access
 - RS232
 - Program on ELMB flash ram
 - Shell for command decoding

- CAN interface for remote access
 - CANopen standard protocol
 - ODE tester program
 - Single Object Dictionary access via SDO or PDO
 - Node status monitor and control
 - Bus traffic monitor
 - Scripting language console for high level command
 - CAN-JTag command translator (to be implemented)
 - PVSS console for ECS
GOL start-up problem
GOL start-up problem

• “It was observed by several users that the GOL might fail to start-up correctly. When that happens, a chip reset is not able to restore normal operation.” [GOL manual]

• A brief history

 – If CLOCK arrives before complete GOL power-up ...
 • Observed in the first ODE prototype
 • Enable on the clock network driven by 2.5 V

 – If the GOL is powered-up after other circuits that provide input signal to the GOL ...
 • Never observed on the ODE board
 • ALL chip powered at 2.5 V with the exception of TTCrx, ELMB and VCsel
 • When 2.5V is OFF and 3.3V is ON the 2.5V power plane goes at ~700 mV
 – TTCrx (through FPGA input pin) partially power the 2.5V plane
 – This voltage should be not enough to power partially the GOL chip

 – If the power-up is too slow...
 • Never observed on the ODE board
 • Test power-up sequence with ramp-up ranging from 5 ms to 250 ms
 – First 3.3 V ON and then 2.5 V ON
The recommendations:

- The power-up sequence must be validated for operating conditions identical to the ones to be used in the final systems ...
 - We do not have the final power supply (Wiener Maraton)
 - Anyhow power-up sequence can be defined in the final power supply

- Use CRT4T ...
 - 13 GOL on the ODE motherboard
 - 13 chips
 - 13 control line
 - Also VCsel needed a CRT4T
 - Huge change in the layout !!!

It is really necessary?
Radiation hardness assurance
Muon Radiation Environment

- Safety factor 2 due to simulation included
- M1 now in a safer environment
- Total Integrated Dose (TID) of few Krad
 - Not a main concern in modern devices
- More stringent requirements for SEE and NIEL effect
 - Functional or destructive failures
 - SEL immune
 - Long term performances degradation

<table>
<thead>
<tr>
<th>Component</th>
<th>Tested by</th>
<th>Tech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>TTCrx</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>QPLL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>SYNC</td>
<td>INFN-Cagliari</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>ELMB board</td>
<td>ATLAS</td>
<td>COTS</td>
</tr>
<tr>
<td>VCSEL ULM850-05</td>
<td>LHCb ST</td>
<td>COTS</td>
</tr>
<tr>
<td>Agilent transmitter</td>
<td>LHCb Muon</td>
<td>COTS</td>
</tr>
<tr>
<td>HFR772</td>
<td>Marseille</td>
<td>COTS</td>
</tr>
<tr>
<td>True-light PIN-preamp</td>
<td>CERN</td>
<td>COTS</td>
</tr>
<tr>
<td>TRR-1B43-000</td>
<td>ATLAS</td>
<td>COTS</td>
</tr>
<tr>
<td>JTAG controller SN74LVT8980</td>
<td>LHCb Muon</td>
<td>INFN-Roma1</td>
</tr>
<tr>
<td>Flash RAM AT45DB041B</td>
<td>LHCb Muon</td>
<td>INFN-Roma1</td>
</tr>
<tr>
<td>Actel ProAsicPlus FPGA APA300</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
<tr>
<td>Clock Driver MC100LVEP111</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
<tr>
<td>Clock Driver MC100LVEP14</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Tested by</th>
<th>Tech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>TTCrx</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>QPLL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>SYNC</td>
<td>INFN-Cagliari</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>ELMB board</td>
<td>ATLAS</td>
<td>COTS</td>
</tr>
<tr>
<td>VCSEL ULM850-05</td>
<td>LHCb ST</td>
<td>COTS</td>
</tr>
<tr>
<td>Agilent transmitter</td>
<td>LHCb Muon</td>
<td>COTS</td>
</tr>
<tr>
<td>HFR772</td>
<td>Marseille</td>
<td>COTS</td>
</tr>
<tr>
<td>True-light PIN-preamp</td>
<td>CERN</td>
<td>COTS</td>
</tr>
<tr>
<td>TRR-1B43-000</td>
<td>ATLAS</td>
<td>COTS</td>
</tr>
<tr>
<td>JTAG controller SN74LVT8980</td>
<td>LHCb Muon</td>
<td>INFN-Roma1</td>
</tr>
<tr>
<td>Flash RAM AT45DB041B</td>
<td>LHCb Muon</td>
<td>INFN-Roma1</td>
</tr>
<tr>
<td>Actel ProAsicPlus FPGA APA300</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
<tr>
<td>Clock Driver MC100LVEP111</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
<tr>
<td>Clock Driver MC100LVEP14</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Tested by</th>
<th>Tech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>TTCrx</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>QPLL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>SYNC</td>
<td>INFN-Cagliari</td>
<td>Rad-Tol</td>
</tr>
<tr>
<td>ELMB board</td>
<td>ATLAS</td>
<td>COTS</td>
</tr>
<tr>
<td>VCSEL ULM850-05</td>
<td>LHCb ST</td>
<td>COTS</td>
</tr>
<tr>
<td>Agilent transmitter</td>
<td>LHCb Muon</td>
<td>COTS</td>
</tr>
<tr>
<td>HFR772</td>
<td>Marseille</td>
<td>COTS</td>
</tr>
<tr>
<td>True-light PIN-preamp</td>
<td>CERN</td>
<td>COTS</td>
</tr>
<tr>
<td>TRR-1B43-000</td>
<td>ATLAS</td>
<td>COTS</td>
</tr>
<tr>
<td>JTAG controller SN74LVT8980</td>
<td>LHCb Muon</td>
<td>INFN-Roma1</td>
</tr>
<tr>
<td>Flash RAM AT45DB041B</td>
<td>LHCb Muon</td>
<td>INFN-Roma1</td>
</tr>
<tr>
<td>Actel ProAsicPlus FPGA APA300</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
<tr>
<td>Clock Driver MC100LVEP111</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
<tr>
<td>Clock Driver MC100LVEP14</td>
<td>LHCb Muon</td>
<td>INFN-LNF</td>
</tr>
</tbody>
</table>
TEST setup

- DUT are mounted on three types of piggy board (up to 4 devices per board)
- Piggy boards are hosted on a single motherboard in the beam area
 - Control board and LVDS drivers/receivers are 2 meters away from the beam spot
- The control board allows:
 - To power DUT (3.3 V, 2.5V, 1.5V) via on board regulators
 - To monitor DUT I/O and core currents via 11 bit ADC (1 mA resolution)
 - To send known patterns to DUT and to receive DUT output signals
 - To verify sent and received patterns, counting the errors
 - To write and read DUT RAM blocks
 - To communicate via RS232 with a computer for settings, monitor and data readout
TEST logic

- **FPGA Logic Test**
 - 3 “regular” shift registers + 1 “TMR” shift register implemented in the FPGA
 - 1024 bit shift registers in APA FPGA (75% of flip-flops)
 - 3 different patterns used
 - “0”, “1” pattern to verify different sensitivity
 - “01” pattern to verify clock upset and control logic upset
 - Shift register clocked at 1 MHz
 - Error forced every $2^{24} - 1$ bits for self-testing
 - I/O and Core current monitored

- **FPGA RAM test**
 - Static test comparing pre-irradiation and post-irradiation memory bit maps
 - APA SRAM block configured as 1x4096 bit

- **Clock Driver Test**
 - Clock at 1 MHz
 - 1 output channel per device observed
Beam parameter

- Proton beam at Louvain la Neuve Cyclotron
- Energy: ~ 70 MeV
- Beam size: 9 cm Ø
- 4 devices irradiated
- Nominal flux used
 - 5×10^7 protons cm$^{-2}$ s$^{-1}$ up to 10^{11} protons cm$^{-2}$
 - 5×10^8 protons cm$^{-2}$ s$^{-1}$ up to 6×10^{11} protons cm$^{-2}$
- Fluence of 6×10^{11} protons cm$^{-2}$ correspond to:
 - $\sim 6 \times 10^{11}$ "energetic" hadrons (~ 200 years of LHCb muon life)
 - ~ 68.5 krad of TID (~ 300 years of LHCb muon life)
 - $\sim 9 \times 10^{11}$ neutrons cm$^{-2}$ for NIEL (~ 10 years of LHCb muon life)
APA test data

<table>
<thead>
<tr>
<th>Fluence p/cm²</th>
<th>Device A</th>
<th>Device B</th>
<th>Device C</th>
<th>Device D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"0" pattern</td>
<td>"1" pattern</td>
<td>"01" pattern</td>
<td>"0" pattern</td>
</tr>
<tr>
<td>10^{11}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$2 	imes 10^{11}$</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$3 	imes 10^{11}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$4 	imes 10^{11}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$5 	imes 10^{11}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$6 	imes 10^{11}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOT</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>σ_{bit} (10^{-14})</td>
<td>0.65</td>
<td>2.9</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

- Low SEU cross section per bit $\rightarrow \sim 10^{-14}$
 - "1" pattern slightly more sensitive (?)
- No SEU in TMR shift registers
- No clock or control logic upset observed
- No SEL detected
APA test data

- Core current start to increase at a fluence of 2.5×10^{11} protons/cm2 (~ 35 krad)
 - Devices continue to work

- SEU RAM cross section per bit $\sim 10^{-13}$

<table>
<thead>
<tr>
<th>Fluence p/cm2</th>
<th>Device A</th>
<th>Device B</th>
<th>Device C</th>
<th>Device D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{11}</td>
<td>27</td>
<td>40</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>2×10^{11}</td>
<td>53</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×10^{11}</td>
<td>-</td>
<td>-</td>
<td>153</td>
<td>199</td>
</tr>
<tr>
<td>TOT</td>
<td>80</td>
<td>70</td>
<td>191</td>
<td>241</td>
</tr>
</tbody>
</table>

| σ bit (10^{-14}) | 9.7 | 8.5 | 7.8 | 9.8 |
Clock Driver test data

- **MC100LVEP111**
 - No SEU observed up to a fluence of 6×10^{11} protons/cm2
 - Cross section per bit $< 8.3 \times 10^{-13}$ cm2 protons$^{-1}$ bit$^{-1}$
 - No SEL detected
 - No current change @ 6×10^{11} protons/cm2

- **MC100LVEP14**
 - 7 SEU observed with a fluence of 6×10^{11} protons/cm2
 - Cross section per bit $= 5.8 \times 10^{-12}$ cm2 protons$^{-1}$ bit$^{-1}$
 - No SEL detected
 - No current change @ 6×10^{11} protons/cm2
ODE components

<table>
<thead>
<tr>
<th>Component</th>
<th>Tested by</th>
<th>TID</th>
<th>SEE</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
<td></td>
<td>Proceedings of the 6th Workshop on Electronics for LHC Experiments</td>
</tr>
<tr>
<td>QPLL</td>
<td>CERN MIC</td>
<td>Rad-Tol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNC</td>
<td>INFN - Cagliari</td>
<td>Rad-Tol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELMB board</td>
<td>ATLAS</td>
<td>COTS</td>
<td>14 krad</td>
<td></td>
</tr>
<tr>
<td>VCsel ULM850-05</td>
<td>LHCb ST</td>
<td>COTS</td>
<td>300 krad</td>
<td>LHCb note 2004-037</td>
</tr>
<tr>
<td>Agilent transmitter HFBR772</td>
<td>LHCb Muon Marseille</td>
<td>COTS</td>
<td>15 krad</td>
<td>LHCb note 2004-013</td>
</tr>
<tr>
<td>True-light PIN-preamp TRR-1B43-000</td>
<td>CERN</td>
<td>COTS</td>
<td>1 Mrad</td>
<td></td>
</tr>
<tr>
<td>JTAG controller SN74LVT8980</td>
<td>ATLAS</td>
<td>COTS</td>
<td>30 krad</td>
<td></td>
</tr>
<tr>
<td>Flash RAM AT45DB041B</td>
<td>LHCb Muon - Roma1</td>
<td>COTS</td>
<td>20 krad</td>
<td></td>
</tr>
<tr>
<td>Actel ProAsicPlus FPGA APA300</td>
<td>LHCb Muon - LNF</td>
<td>COTS</td>
<td>68 krad</td>
<td></td>
</tr>
<tr>
<td>Clock Driver MC100LVEP111</td>
<td>LHCb Muon - LNF</td>
<td>COTS</td>
<td>68 krad</td>
<td></td>
</tr>
<tr>
<td>Clock Driver MC100LVEP14</td>
<td>LHCb Muon - LNF</td>
<td>COTS</td>
<td>68 krad</td>
<td></td>
</tr>
</tbody>
</table>

- NO SEL detected
- No performances degradation observed for NIEL

ATLAS Internal Working Note DCS- IWN20, DCS- IWN21, DCS- IWN23

Proceedings of the 9th Workshop on Electronics for LHC Experiments,

Note in preparation

Note in preparation

Note in preparation

Note in preparation
SEE estimation...

- **FPGA Hard SEE**
 - Possible ODE permanent damage
 - Main worry in the first flash-based FPGA
 - From Actel tests no latch-up has been observed for LET higher than 100 MeV cm2/mg for APA FPGA
 - This threshold should guarantee our system free from SEL

- **FPGA SOFT SEE**
 - Possible loss of ODE functionalities
 - 148 FPGA in the muon L0 electronics
 - Each FPGA uses
 - \sim 2000 flip-flops (without TMR)
 - 512 RAM bit
 - In the worst case
 - $3 \times 10^{-14} \times 5 \times 10^{10} \times 2000 \times 148 = 444$ flip-flop upsets in 10 years
 - $10^{-13} \times 3 \times 10^{10} \times 512 \times 148 = 227$ RAM bit upsets in 10 years
 - The foreseen TMR technique and EDAC coding allow to improve system reliability

- **Clock Upset**
 - Possible ODE misalignment and GOL loss of lock
 - 6 MC100LVEP14 (4 channels) per ODE (148 board)
 - $5.8 \times 10^{-12} \times 5 \times 10^{10} \times 4 \times 6 \times 148 = 1030$ upsets in 10 years
SEE estimation...

- **HFBR772 upset**
 - “The cross-section for single event upsets is equal to \((4.5\pm0.1)\times10^{-10}\text{cm}^2\) per single optical link. The corresponding inefficiency on the level-0 muon trigger is below \(10^{-10}\) and therefore negligible.” [LHCb note 2004-013]

- **GOL, TTCrx, QPLL and SYNC upset**
 - Rad-Tol technology
 - Negligible effect

- **ELMB upset**
 - Loss of ECS communication
 - No functional problems on the ODE (!)
 - ELMB can be reset through
 - Internal watchdog system
 - A “reset board” seated in the crate and controllable by ECS

- **JTag controller and Flash Ram upset**
 - No functional problems on the ODE
TEST ...
ODE – L0 muon trigger test

- ODE (first prototype) and the muon trigger processing board with 100 m ribbon fiber

- System clock generated by a TTCvx
 - Telecom frequency (77.76 MHz)
 - Maxim PLL+VCXO for clock de-jitter

- Data generated by the SYNC chips using their test features
 - Transmission of consecutive IDLE words
 - Transmission of fixed patterns wrote on SYNC through I^2C interface
 - Transmission of a Pseudo-random pattern generated on SYNC

- Received Data monitored on a PC and oscilloscope TDS694C
 - Check data integrity and synchronization
 - Well open eye diagram
 - Max peak-to-peak jitter 186 ps (σ ~ 21 ps)
System Test

- 1 Muon Chamber
 - 12 CARDIAC (96 channels)

- 1 IB (+ TB) on custom crate

- 1 ODE (+ TB) on custom crate

- 1 VME crate with
 - 1 SB
 - 1 TTCvx
 - 1 TTCvi
 - Clock generator (custom) board
 - Optical Receiver board (custom)
 - 1 interface VME-PCI

- Control PC with
 - PVSS
 - KVASER board (PCI-CAN interface)
 - ODE control software

- Pattern generator and Logic Analyzer
Chain setup

Custom crate

IB + TB

ODE + TB

Optical receiver

TTCvi

TTCvx

CARDIAC

SB

VME crate

15 July 2005
Test performed

- **TTC interface**
 - TTC command (L0yes, L0_res, BC_res, Ev_res) sent using TTCvi+TTCvx
 - Command correctly received, decoded and distributed on the ODE

- **Front-end, trigger and DAQ interfaces**
 - Using the pulse functionality on SB and DIALOG,
 - generate specific DIALOG inputs and find them in the right place at the end of the chain
 - generate specific DIALOG inputs put in specific logical combination among them and find the right logical channel (only) in the right place at the end of the chain. 2 kinds of combinations were possible:
 - 2 logical channels starting from 4 physical channels (2xOR2)
 - 1 logical channel starting from 4 physical channels (1xOR4)
 - Data checked directly at the end of the chain following the 2 possible data links (Trigger and DAQ)
 - Both checks performed by reading data on a FIFO in the optical receiver board
 - Verifying correctness of data frame and synchronization

- **ECS interface**
 - ODE configuration
 - SYNC histogram read-back
Production test

- Quality assurance on board assembly (factory)

- TTC interface test
 - TTCvi + TTCvx
 - Synchronization and command decoding test

- Front-end input test
 - SYNC chip already tested
 - Patter generator or random pulses
 - Histogram from SYNC

- Trigger and DAQ link test
 - BERT up to 10^{-12} using ODE test features
 - Custom 6U VME board
 - 8 full duplex optical channel
 - VirtexIIPRO
 - 8 full duplex serial transceivers @3.125 Gbit/s
 - IBM 400MHz PowerPC™
 - 400 MHz clock rate
 - TTCrx + QPLL for system synchronization
 - 528 Kbytes fast dual port RAM

- ECS interface test
 - Board initialization and test via CANbus interface
Conclusions

- ODE board fully characterized
 - Architecture well defined
 - Low jitter clock network
 - 50 ps peak-to-peak
 - Low BER optical links for trigger and DAQ
 - 10^{-16} estimated BER
 - 10^{-12} measured BER
 - Good radiation hardness assurance

- ODE board fulfils the experiment requirements
 - L0 requirements
 - Buffering, consecutive triggers, alignment check, test features, ...
 - Trigger and DAQ systems requirements
 - Formatting, transmission quality, ...

- Ready for the pre-production
 - Production test-stand defined
Spare slides
GOL interconnection

- ELMB
- TTCrx
- Board Controller
- SYNC Chip
- JTAG controller
- Laser driver

- 3.3 V
- 2.5 V
- 2.5 V
- 2.5 V
- 3.3 V

- SCL
- SDA
- Data
- TX_en
- TX_er
- TRST*
- TCK
- TMS
- TDO
- TDI

- CLOCK Driver Enable*
- Reset*
- Clock

- 3.3 V

- Enable*

- SN74LVT8980

15 July 2005
TTC decode

- Receive signals from TTCrx
 - Decode broadcast command
 - Bunch-ID reset (BC_res)
 - L0 Event ID reset (EV_res)
 - L0 reset (L0_res)
 - Distribute resets and L0 trigger signals

- Internal 12 bit Bunch-ID counter (BC_Id)
 - Synchronous reset with BC_res
 - Predefined BC_offset loaded at BC_res

- Internal 12 bit L0 Event-ID counter (L0_Id)
 - Synchronous reset with EV_res or L0_res
 - First L0 trigger after a counter reset ⇒ L0_Id=0

- For each L0 trigger
 - Check internal BC_Id vs TTCrx BCnt
 - Generate header word (25 bit)
 - 1 check bit + 12 bit L0_Id + 12 bit BC_Id
 - Generate header FIFO write
FIFO header

- Allow consecutive L0 trigger
 - 16 words deep
 - 32/64 in final version (?)

- Data protected by Hamming code
 - Single error detection and correction
 - Double error detection
 - 6 extra code bit

- Data discharged at FIFO full

- FIFO reset with L0_res
CHK footer

- Receive INFO word
 - 4 bit SYNC BX_Id
 - 4 bit SYNC EV_Id
 - 2 bit SYNC data error (double error detection)

- Generate 4 footer check words
 - BX_Id alignment of each SYNC vs internal BC_Id (24 bit)
 - EV_Id alignment of each SYNC vs internal L0_Id (24 bit)
 - Data error of each SYNC + internal FIFO error (25 bit)
 - Board address + Error flags (not yet implemented)

- Footer protected by Hamming code

- Calculate frame checksum
 - 32 bit adder without carry
 - Header
 - 24 data words
 - 4 footer check words
Scan logic

- Scan start if header FIFO is not empty

- Drive GOL transmission

- Read header FIFO
 - Store BC_Id and L0_Id in internal registers
 - Send hamming header to GOL

- Read SYNC chip in parallel mode
 - Drive dataswitch to redirect BUS_UP and BUS_DW on internal buses
 - For the first 12 clock cycles
 - Receive data word on BUS_UP
 - Receive info word on BUS_DW
 - For the second 12 clock cycles
 - Receive data word on BUS_DW
 - Receive info word on BUS_UP
 - Send data words to GOL with 1-level pipeline

- Read and send footer check words and checksum to GOL
I²C interface

- **I²C interface implemented on L0 controller**
 - **Write cycle**

 - Start from master
 - **R/W**
 - **ACK from slave**
 - **ACK from slave**
 - **ACK from slave**

- **Read cycle**

 - Start from master
 - **R/W**
 - **ACK from slave**
 - **ACK from slave**
 - **ACK from slave**
 - **ACK from slave**
 - **NOT ACK, End from master**