

giulietto.felici@lnf.infn.it

- Why do we need the IB System ?
 - The apparatus
 - FEE Channels & Logical Channels
 - The FE chain
 - Station and Regions

The IB System architecture

- The IB and the TB boards
- The IB and TB crate

System qualification

- Skew requirements
- Skew measurements
- Prototypes qualification test setup
- Skew measurement results
- Mass production test setup
- Irradiation Test
- Conclusions
- Detector mapping example

The Apparatus

Quadrants - Regions

FEE channels & Logical Channels (Es: M3R3)

ON-DETECTOR OFF-DETECTOR HV lines (floating **electronics electronics** HV PS) HV SYS **LVDS** link (Optocoupled) ECS SB SYS FEE channels LVDS link **IB SYS** LVDS LV lines (floating LV PS) links LV PS **LVDS** link FEE channels ODE SYS **Trigger & DAQ** (Optical Link)

The IB System is used to merge 26880 FE channels and to generate 9408 logical channels

Five different configurations are required to readout the muon detector

Station	Region	Number of optical links per quarter of region	Number of pads per optical links	Number of horizontal strips per optical link	Number of vertical strips per optical link	Total number of logical channels per link
M1	R1					
	R2	24	24			24
	R3	24	24			24
	R4					
M2 or M2	R1	12		16	12	28
	R2	24		4	12	16
1412 01 1413	R3	12		4	24	28
	R4	12		4	24	28
	R1	12	24			24
M4 or M5	R2	12		8	6	14
WI4 OF WI5	R3	12		4	6	10
	R4	12		4	6	10

Six TS configurations

Six IB types

Single PCB Six FPGA configurations

Single Transition Board Six input cable configurations

giulietto.felici@lnf.infn.it

→ simplifies maintenance (IB can be easily replaced in case of failure)
→ simplifies cabling

skew between logical output channels must be minimized as much as possible to maximize efficiency

Front-End single channel delay adjustment capability : ~ 1.6 ns step (50 ns)

The electronics and cables contribution to jitter and skew must be less than 3 ns

giulietto.felici@Inf.infn.it

Prototypes qualification test setup

Skew measurements \rightarrow M2(M3)R3

M2(M3)R3

Trigger Sector → 24 Vertical strips + 4 horizontal strips

Skew measurements \rightarrow M2(M3)R4

Optical Link

M2(M3)R4

Trigger Sector \rightarrow 24 Vertical strips + 4 horizontal strips

Logical Channels

giulietto.felici@lnf.infn.it

M4(M5)R2

Trigger Sector → 6 Vertical strips + 8 horizontal strips

Trigger Sector \rightarrow 6 Vertical strips + 4 horizontal strips

M4(M5)R4

Trigger Sector \rightarrow 6 Vertical strips + 4 horizontal strips

A measurement system has been developed for IB production test. The system features:

- a switching matrix for input/output delay measurement (192 differential inputs / 64 differential outputs)
- a new measurement method based on input/output signal phase measurement

Irradiation Test Setup → see ODE PRR

Proton beam at Louvain la Neuve Cyclotron

- Energy: ~ 70 MeV
- Nominal flux used
 - 5×10^7 protons cm⁻² s⁻¹ up to 10^{11} protons cm⁻²
 - 5 x 10⁸ protons cm⁻² s⁻¹ up to 6 x 10¹¹ protons cm⁻²
- Fluence of 6 x 10¹¹ protons cm-2 correspond to:
 - ~ 6 x 10¹¹ "energetic" hadrons (~ 120 years of LHCb muon life)
 - ~ 68.5 krad of TID (~ 86 years of LHCb muon life)
 - ~ 9 x 10¹¹ neutrons cm⁻² for NIEL (~ 10 years of LHCb muon life)

Irradiation Test → A54SX16A

A54SX16A

- Anti-fuse based FPGA
- 0.22µm/0.25µm CMOS Process Technology
- 24000 (16000) system gates (typical gates)
- 924 combinatorial cells
- 528(990) dedicated flip-flops (maximum flipflops)

Irradiation results

- No SEU observed in flip-flops up to a fluence of 6 x 10⁴⁵¹/₅x16A Board #1 Device #1 I/O 3.3V Flux=5x10⁷-10⁸/cm² Fluence ~ 6x10¹¹ protons/cm²
 - Cross section per bit < 2.1x10⁻¹⁴ cm² protons⁻¹ bit⁻¹ 7.5
- No clock or control logic upset observed
- No SEL detected
- No change in I/O current @ 6x10¹¹ protons/cm²
- Small changes in Core current @ 6x10¹¹ protons/cm²

LVDS Drivers : SN75LVDS289

- No SEU observed in flip-flops up to a fluence of 6 x 10¹¹ protons/cm²
- No SEL detected
- No change in current @ 6 x 10¹¹ protons/cm²

LVDS Receivers : SN75LVDT288

- No SEU observed in flip-flops up to a fluence of 6 x 10¹¹ protons/cm²
- No SEL detected
- No change in current @ 6 x 10¹¹ protons/cm²

- The Intermediate Board system is used to match FEE granularity and Trigger logic requirements
- ✓ 6 different logic configurations are required to match the whole muon detector
- ✓ A single (halogen free) PCB board together with anti-fuse programmable logic has been used to implement the configurations.
- Six prototypes corresponding to the six required configurations have been produced and tested
- ✓ Skew measurements are within the design specs
- ✓ FPGA/Drivers/Receivers do not show any problem up to a fluence of 6 x 10¹¹ protons/cm²
- A test setup for IB mass production has been designed. The circuit features an input-output switching matrix allowing single channel delay measurement with a resolution less than 100 ps

Conclusions

To design both the Transition Board and the Intermediate Boards the detector signal full path must be considered ...

The muon detector mapping for M2R2, M2(M3)R3-

R4, M4(M5)R2-R3-R4 comes for free

00-07-(12-11-10)-(24-23-22)	00-07-(09-08-07)-(21-20-19)	01-07-(12-11-10)-(24-23-22)	01-07-(09-08-07)-(21-20-19)
00-07-(01-02-03)-(13-14-15)	00-07-(04-05-06)-(16-17-18)	01-07-(01-02-03)-(13-14-15)	01-07-(04-05-06)-(16-17-18)
00-06-(12-11-10)-(12-11-10)	00-06-(09-08-07)-(09-08-07)	01-06-(12-11-10)-(12-11-10)	01-06-(09-08-07)-(09-08-07)
00-06-(01-02-03)-(01-02-03)	00-06-(04-05-06)-(04-05-06)	01-06-(01-02-03)-(01-02-03)	01-06-(04-05-06)-(04-05-06)
00-05-(12-11-10)-(24-23-22)	00-05-(09-08-07)-(21-20-19)	01-05-(12-11-10)-(24-23-22)	01-05-(09-08-07)-(21-20-19)
00-05-(01-02-03)-(13-14-15)	00-05-(04-05-06)-(16-17-18)	01-05-(01-02-03)-(13-14-15)	01-05-(04-05-06)-(16-17-18)
00-04-(12-11-10)-(12-11-10)	00-04-(09-08-07)-(09-08-07)	01-04-(12-11-10)-(12-11-10)	01-04-(09-08-07)-(09-08-07)
00-04-(01-02-03)-(01-02-03)	00-04-(04-05-06)-(04-05-06)	01-04-(01-02-03)-(01-02-03)	01-04-(04-05-06)-(04-05-06)
		01-03-(12-11-10)-(24-23-22)	01-03-(09-08-07)-(21-20-19)
Q1 - M3 - R3 - 00 - 07	Q1- M3- R3- 01- 07	01-03-(01-02-03)-(13-14-15)	01-03-(04-05-06)-(16-17-18)
Q1- M3- R3- 00- 06	Q1- M3- R3- 01- 06	01-02-(12-11-10)-(12-11-10)	01-02-(09-08-07)-(09-08-07)
Q1- M3- R3- 00- 05	Q1- M3- R3- 01- 05	01-02-(01-02-03)-(01-02-03)	01-02-(04-05-06)-(04-05-06)
Q1- M3- R3- 00- 04	Q1- M3- R3- 01- 04	01-01-(12-11-10)-(24-23-22)	01-01-(09-08-07)-(21-20-19)
	Q1- M3- R3- 01- 03	01-01-(12-11-10)(2+20-22)	01-01-(03-00-01)-(21-20-10)
	Q1- M3- R3- 01- 02	01-01-(01-02-03)-(13-14-15)	01-01-(04-05-06)-(16-17-18)
	Q1- M3- R3- 01- 01	01-00-(12-11-10)-(12-11-10)	01-00-(09-08-07)-(09-08-07)
	Q1- M3- R3- 01- 00	01-00-(01-02-03)-(01-02-03)	01-00-(04-05-06)-(04-05-06)
	Chamber x chamber coordinate y chamber coordinate cable number		Trigger sector —————
	TB socket number		

Detector Mapping (II)

Detector Mapping (III)

				Γ				ГВ	S	oc	ke	t n	ur	nb	er		Т	B	Ch	an	ne	el r	าน	mt	be	r_]																		
191	190	189	188	187 4	186	185	184	183	182	181	180 2	179 3	178	177	176	175	174	173	172	171 2	170	169	168	167	166	165	164 2	163		161	160	159	158	157	156 2	155	154	153	152	151	150	149	148 1	147 9	146	145	144
96	97	98	99 1	100	101	102	103	104	105	106	107 1	¹⁰⁸ 4	109	110	111	112	113	114	115 1	116 5	117	118	119	120	121	122	123 1	124 6	125	126	127	128	129	130	131	132 7	133	134	135	136	137	138	139 1	140 8	141	142	143
95	94	93	92 1	91 2	06	68	88	87	98	58	84 1	83 1	82	81	08	79	78	77	76 1	75 0	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
0	4	2	3	4 L	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36 5	37	38	39	40	41	42	43	44 5	45	46	47
	Vertical logical channel Horizontal logical channel											1			8	Tri	gg	er	Se	ect	tor	-				1									_												

giulietto.felici@Inf.infn.it

Detector Mapping Example

Detector Mapping (IV)

giulietto.felici@Inf.infn.it

Detector Mapping (V)

