LHCb Muon System

Alessia Satta
on behalf of LHCb Muon System:
CAGLIARI, CERN, LNF, FERRARA, FIRENZE, PNPI, ROMAI, ROMAII
13/09/05
LHCB physics

- A beauty dedicated LHC experiment:
 - CP violations: measurements of $\alpha \beta \gamma$
 - Unique access to Bs: measurements of Δm and $\Delta \Gamma$ and mixing angle
 - Rare decays
 - Unique access to all beauty hadrons ex. Λ_b, B_c
- Indirect search for new physics, complementary to direct observation possible in Atlas or CMS
LHCb: a dedicated b experiment

Beauty production peaks in forward-backward directions: a fixed target like detector layout
Muons in LHCb: usage

- **Trigger:**
 - Muons are ~ 200 KHz out of the 1MHz first level trigger rate
 - Inclusive muon selections fill 75% of stored data

- **Offline**
 - Decay channels mu:
 - $\text{Bs} \rightarrow \text{J/Ψ φ}$
 - $\text{Bs} \rightarrow \text{J/Ψ η}$
 - $\text{Bs} \rightarrow \mu\mu$ ($\text{Bd} \rightarrow \mu\mu + \text{D0} \rightarrow \mu\mu$)
 - $\text{B} \rightarrow \text{K*} \mu\mu$
 -
 - tagging
Muon system design

Design driven by first level (hardware) trigger (L0)
- A rejection factor of mb of ~1/100
- Medium Pt > 1GeV/c
 - Good momentum resolution is required
 - No B field in the detector
 - a station in front of the calorimeter
- Trigger requires 5 hits out of 5 inside BX
 - high efficiency in 25ns
Optimized granularity ~ MCS contribution to $\sigma(1/P_T)$

- High correlation angle momentum
 - Better granularity at high η

- 4 concentric regions
 - Channel linear dimensions double from an inner to an outer region
 - 20 different channels sizes
 - min 6.3x31 mm
 - max 250x 310 mm
Adopted technology

- Multi Wire Proportional chambers with 4 ORed gas gaps (2 gaps in M1 to reduce X_0) → high efficiency
 - + GEM chambers 1% area (*see next talk*)
- 1 Front End per 2 gaps (1 in M1) → rate capability and robustness

5 mm gas gap
2 mm wire pitch
Ar /CO$_2$ /CF$_4$ = 40/ 55/ 5
Layout

- Large variation in channel **dimensions** and **occupancy** in the 5x4 regions + **technology** and **cost constraints** → the desired layout is obtained by
 - Chambers with cathode, wire, combined readout
 - Pads and strips
 - Strips reduce from 55k → 26k trigger channels

- To minimize **capacitance** and **deadtime**, pads smaller than required by granularity are connected to a FE → 120k ORed FE channels
MWPC performance

Efficiency

- 2.0mm pitch, cathode readout
- 25ns time window
- 20ns time window
- 15ns time window

- 2.0mm pitch, wire readout
- 25ns time window
- 20ns time window
- 15ns time window

- Time resolution RMS < 4 ns
- XTalk ~ 10%
Rates

- Large radiation dose in the inner regions of station M1 and M2
 - Rate = 80(M1R2), 35(M1R3,M2R1), < 15 (rest) kHz/cm²
 - Integrated Q = 0.9(M1R1), 0.5(M2R1), < 0.3 (rest) C/cm²
 - 10 years of running + safety factor 2 (M1) 3(M2-M5) $L=2\times10^{32}$

- 5 years of running of M1R2 (> 8 per M2R1 and > 10 for the rest) have been tested and chamber performance is ok, wire ok - some etching on cathode and panel due to CF4 → CF4 content ↓ 5%
MWPC construction

- 1368 chambers → automatic tools

Ferrara wiring machine

CERN soldering machine

Many measurements tools exist: panel planarity, wire tension, wire pitch
Status of production

- ~ 45% of the chambers have been produced
- Chamber tests on 100% of production
 - gas tightness
 - HV
 - gain uniformity

Gas gap gain uniformity

Production status

* Ratios Avr/Avr^* for double gaps (1+2)&(3+4)
Electronic chain

- On detector boards:
 - **CARIOCA**: Custom front end chip (ASD+BLR) unipolar, peaking time 10 ns, deadtime ~60ns (120k channels)
 - **DIALOG**: Custom chip OR FE’s to achieve the required granularity, introduce the delays per FE

- Off detector boards:
 - **SYNC**: a custom chip with TDC to allow the synchronization of the apparatus
L0 muon trigger

Completely hardware and fully synchronous

- Track search in M1-M5
 - Seed in M3
 - Hits in M4 and M5 define a μ track ($20 \lambda_I$)
 - M2 and M3 hits predict M1 hit position
 - M1 and M2 hits define μ direction after magnet

- B-kick to calculate P_T
 (P_T kick ~ 1.2 GeV/c)
L0 Muon performance

- P_T resolution $\sim 20\%$
- High efficiency
- Very robust against high background level in the detector

<table>
<thead>
<tr>
<th>100 kHz output rate</th>
<th>efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal condition</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td>82%</td>
</tr>
<tr>
<td>+ safety factors</td>
<td>41%</td>
</tr>
<tr>
<td></td>
<td>76%</td>
</tr>
</tbody>
</table>

Safety factor 2 in M1 and 3 in M2-M5

$B \to \mu X$

$B \to J/\Psi \phi$
HLT muon streams

Lifetime unbiased **dimuon stream (600Hz)**

- High rate dimuon trigger will provide invaluable **calibration** tool
- Distinctive mass peaks: J/Ψ, Υ, Z
 - can be used to fix mass scale
- Sample selected **independent of lifetime** dominated by prompt $J/\Psi \rightarrow$ allow study of IP and proper time res. in data
- Overlap with other triggers will allow proper time acceptance to be studied

True J/Ψ rate ~ 130 Hz

$\rightarrow 10^9$ events / year!
HLT muon streams

<table>
<thead>
<tr>
<th>Inclusive single muon (900Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- providing unbiased selection of ‘other B’ in event, invaluable for studying biases in exclusive trigger selection</td>
</tr>
<tr>
<td>- useful for ‘data-mining’</td>
</tr>
<tr>
<td>- Straightforward & robust trigger; a reassuring lifeboat for early operation</td>
</tr>
<tr>
<td>- High beauty purity: 550 Hz of true $b \rightarrow \mu$ events in the 900 Hz</td>
</tr>
<tr>
<td>- $\sim 10^9$ perfectly tagged B decays / year !</td>
</tr>
<tr>
<td>- Add $\sim 10%$ of effective statistics with respect to exclusive selection</td>
</tr>
<tr>
<td>- Useful to recover decay modes difficult to trigger exclusively (e.g. $B_s \rightarrow Ks Ks$)</td>
</tr>
</tbody>
</table>
Offline performance

- $B_s \rightarrow J/\Psi \phi + B_s \rightarrow J/\Psi \eta$
 - Mixing angle of B_s: $\sigma \sim 0.05$ (1y)
 - $\Delta \Gamma/\Gamma: \sigma \sim 0.03$ (1y)
- $B_s \rightarrow \mu \mu$: $\sim 1/7$ (1/5) of the effective tagging power is due to muons in B_s (B_d)

$\Delta m_s = 25 \text{ ps}^{-1}$
Conclusions

- The designed detector has
 - Good time resolution, high efficiency, robustness, high rate capability, aging resistance

- Construction well advanced