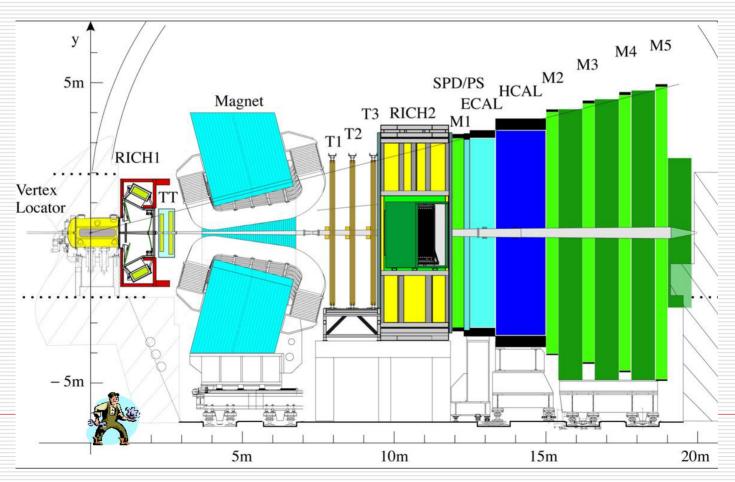
LHCb Muon System

Alessia Satta


on behalf of Muon System:
CAGLIARI, CERN, LNF, FERRARA,
FIRENZE, PNPI, ROMAI, ROMAII
13/09/05

LHCB physics

- □ A beauty dedicated LHC experiment:
 - \blacksquare CP violations : measurements of α β γ
 - Unique access to Bs: measurements of Δm and $\Delta \Gamma$ and mixing angle
 - Rare decays
 - Unique access to all beauty hadrons ex. Λ_b , B_c
- Indirect search for new physics, complementary to direct observation possible in Atlas or CMS

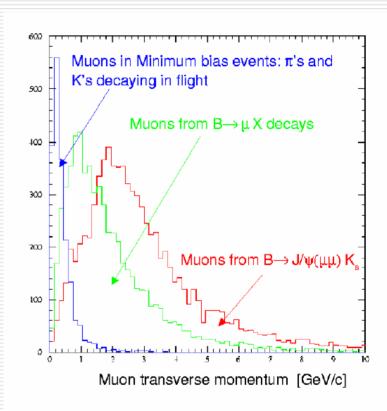
LHCb: a dedicated b experiment

Beauty production peaks in forward-backward directions: a fixed target like detector layout

Muons in LHCb: usage

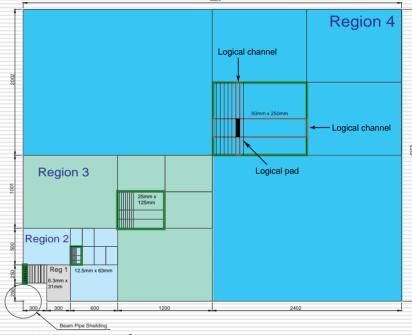
☐ Trigger:

- Muons are ~ 200 KHz out of the 1MHz first level trigger rate
- Inclusive muon selections fill 75% of stored data


□ Offline

- Decay channels mu:
 - Bs→J/Ψ φ
 - Bs → J/Ψ η
 - Bs→μμ (Bd→μμ + D0→μμ)
 - B→K* μμ
 - **....**
- tagging

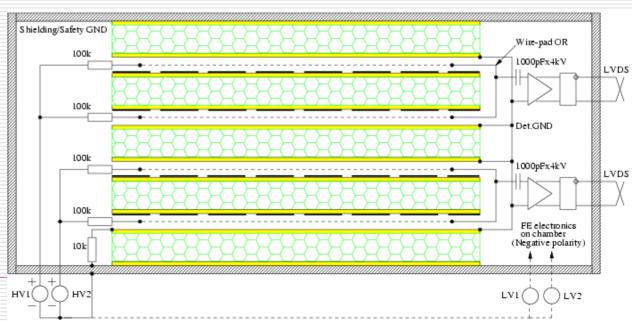
Muon system design


Design driven by first level (harware) trigger (L0)

- □ A rejection factor of mb of ~1/100
- Medium Pt > 1GeV/c
- → Good momentum resolution is required
 - No B field in the detector
 - → a station in front of the calorimeter
- □ Trigger requires 5 hits out of 5 inside BX→high efficiency in 25ns

Logical Layout

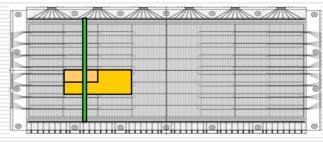
- Optimized granularity \sim MCS contribution to $\sigma(1/P_T)$
- High correlation angle momentum
 - Better granularity at high η
- 4 concentric regions
 - Channel linear dimensions double from an inner to an outer region
 - 20 different channels sizes



min 6.3x31 mm max 250x 310 mm

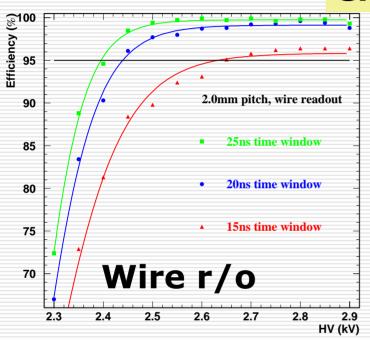
Adopted technology

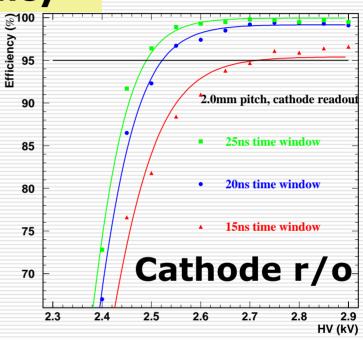
- Multi Wire Proportional chambers with 4 ORed gas gaps (2 gaps in M1 to reduce X₀) → high efficiency
 - + GEM chambers 1% area (see next talk)
- □ 1 Front End per 2 gaps (1 in M1) → rate capability and robustness


5 mm gas gap 2 mm wire pitch Ar $/CO_2$ $/CF_4$ = 40/ 55/ 5

Layout

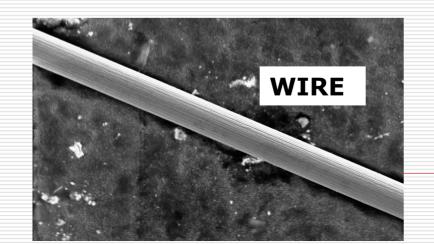
- □ Large variation in channel dimensions and occupancy in the 5x4 regions + technology and cost constraints → the desired layout is obtained by
 - Chambers with cathode, wire, combined readout
 - Pads and strips
 - Strips reduce from $55k \rightarrow 26k$ trigger channels

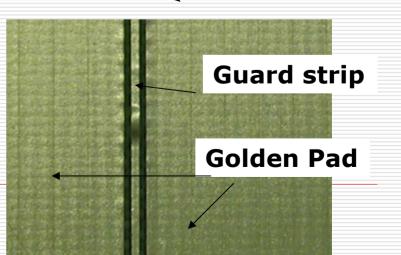




□ To minimize capacitance and deadtime, pads smaller than required by granularity are connected to a FE → 120k ORed FE channels

MWPC performance





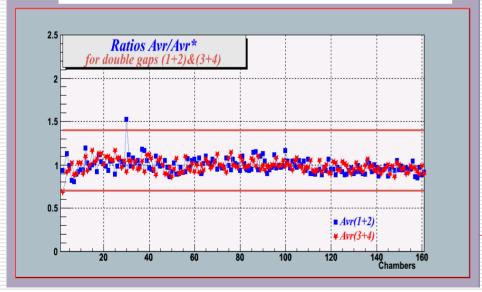
- □ Time resolution RMS < 4 ns</p>
- ☐ XTalk ~ 10%

Rates

- Large radiation dose in the inner regions of station M1 and M2
 - Rate =80(M1R2), 35(M1R3,M2R1), < 15 (rest) kHz/cm2
 - Integrated Q= 0.9(M1R1), 0.5(M2R1), < 0.3 (rest) C/cm 10 years of running + safety factor 2 (M1) 3(M2-M5) L=2*10³²
- □ 5 years of running of M1R2 (> 8 per M2R1 and >10 for the rest) have been tested and chamber performance is ok, wire ok some etching on cathode and panel due to CF4 → CF4 content \ 5%

MWPC construction

 \square 1368 chambers \rightarrow automatic tools



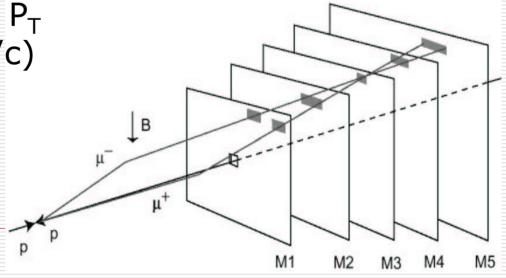
Many measurements tools exist: panel planarity, wire tension, wire pitch

Status of production

- □ ~ 45% of the chambers have been produced
- □ Chamber tests on 100% of production
 - gas tightness
 - HV
 - gain uniformity

Gas gap gain uniformity

Electronic chain


- On detector boards:
 - CARIOCA: Custom front end chip (ASD+BLR) unipolar, peaking time 10 ns deadtime ~60ns (120k channels)
 - DIALOG: Custom chip OR FE's to achieve the required granularity introduce the delays per FE
- □ Off detector boards:
 - SYNC, a custom chip with TDC to allow the synchronization of the apparatus

L0 muon trigger

Completely hardware and fully synchronous

- ☐ Track search in M1-M5
 - Seed in M3
 - Hits in M4 and M5 define a μ track (20 $\lambda_{\rm I}$)
 - M2 and M3 hits predict M1 hit position
 - M1 and M2 hits define µ direction after magnet

□ B-kick to calculate P_T (P_T kick ~ 1.2 GeV/c)

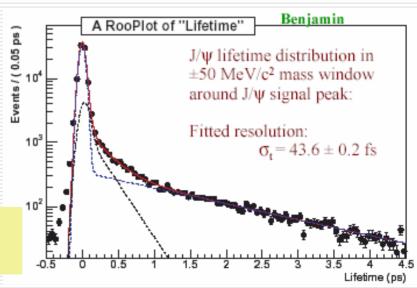
L0 Muon performance

- \square P_T resolution ~20%
- High efficiency
- Very robust against high background level in the detector

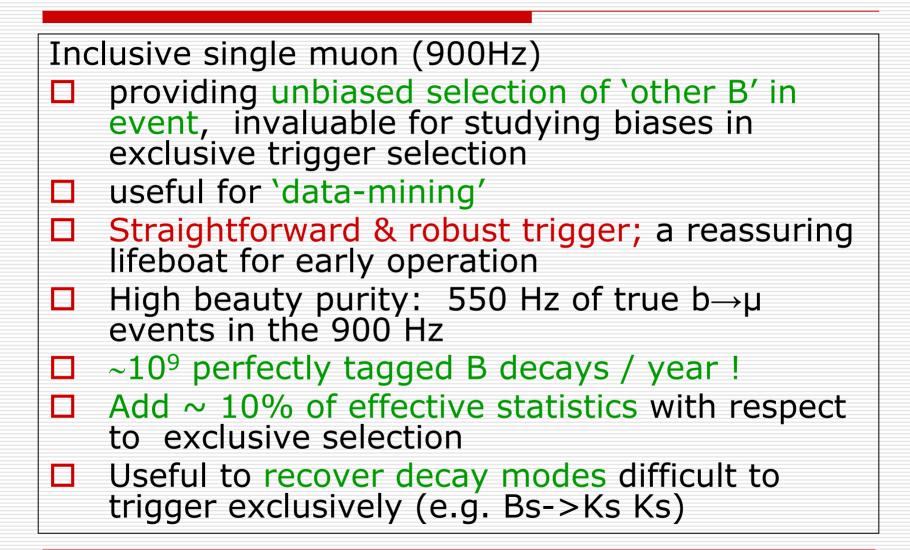
100 kHz output rate	efficiency
Nominal condition	46% 82%
+ safety factors	41% 76%

Signal efficiency (%)
90
1 1000 $L0(\mu)$ trigger rate = 125kHz \not $B_s^0 \rightarrow J/\psi (\mu^+\mu^-)\Phi(K^+K^-)$ min. bias interactions 800 00 00(μ) output rate (kHz) 0.6 0.4 *************** 200 0.2 Cut on muon p_T [GeV/c] $b \rightarrow \mu X$

 $B \rightarrow J\Psi \phi$

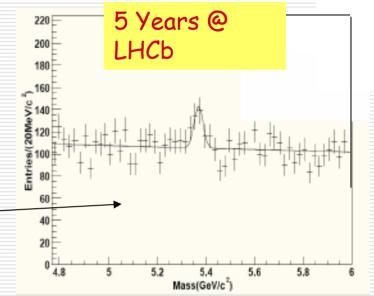

safety factor 2 in M1 and 3 in M2-M5

HLT muon streams

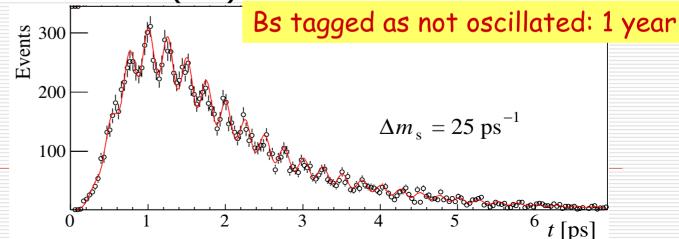

Lifetime unbiased dimuon stream (600Hz)

- High rate dimuon trigger will provide invaluable calibration tool
- Distinctive mass peaks: J/Ψ..., Υ..., Z...
 - → can be used to fix mass scale
- Sample selected independent of lifetime dominated by prompt J/Ψ →
 - allow study of IP and proper time res. in data
- Overlap with other triggers will allow proper time acceptance to be studied

True J/Ψ rate ~ 130 Hz →10⁹ events / year !



HLT muon streams



Offline performance

- □ Bs->J/Ψ φ + Bs->J/Ψ η
 - Mixing angle of Bs: $\sigma \sim 0.05$ (1y)
 - $\Delta\Gamma/\Gamma$: σ ~ 0.03 (1y)
- 🛘 Bs->μμ։

 $\sim 1/7$ (1/5) of the effective tagging power is due to muons in Bs (Bd)

Conclusions

- □ The designed detector has
 - Good time resolution, high efficiency, robustness, high rate capability, aging resistance

Construction well advanced

